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Abstract

We propose a generalization of random coefficients models, in which the regres-

sion model is an unknown function of a vector of regressors, each of which is multi-

plied by an unobserved error. We also investigate a more restrictive model which is

additive (or additive with interactions) in unknown functions of each regressor multi-

plied by its error. We show nonparametric identification of these models. In addition

to providing a natural generalization of random coefficients, we provide economic

motivations for the model based on demand system estimation. In these applications,

the random coefficients can be interpreted as random utility parameters that take the

form of Engel scales or Barten scales, which in the past were estimated as determin-

istic preference heterogeneity or household technology parameters. We apply these

results to consumer surplus and related welfare calculations.
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1 Introduction

Suppose an observed variable Y depends on a vector of observed regressors X = (X1, ..., XK ),
and on a vector of unobserved errors U0,U1, ...,UK . These errors represent unobserved
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heterogeneity in the dependence of Y on X (U0 could also represent measurement error in

Y ). We propose a generalized random coefficients model given by

Y = G (X1U1, ..., XK UK )+U0 (1)

for some unknown function G. Given observed data, we show that the function G and

the distribution functions of each random coefficient Uk are nonparametrically identified.

Our model permits the random coefficients to be correlated with regressors. Identification

in this case uses instruments by assuming each Uk is conditionally independent of the

corresponding Xk , conditioning on observed control function residuals Z .

We provide examples of economic models that have been widely applied empirically

that take the form of equation (1) but with Uk specified as deterministic functions of ob-

servables. It is an immediate natural generalization of these applications to let Uk embody

unobserved heterogeneity. We provide estimates of two such models from the consumer

demand system literature.

Our identification results for the general model of equation (1) impose some strong

smoothness assumptions, so we first focus on additive models of the form

Y =
∑K

k=1
Gk (XkUk)+U0 (2)

where the functions G1, ...,GK are unknown. For these additive models the identify-

ing assumptions are less restrictive. We then give stronger conditions for identifying the

nonadditive components of equation (1). We also consider extensions such as adding in-

teraction terms to the model of the form X j XkU jk (that is, additional random coefficients

on cross terms), and we consider identification when some Xk components are discretely

distributed.

Nonparametric identification and estimation of random coefficients models is con-

sidered by Beran and Hall (1992), Beran, Feuerverger, and Hall (1996) and Hoderlein,

Klemelae, and Mammen (2010). Recent generalizations include random coefficient linear

index models in binary choice, e.g., Ichimura and Thompson (1998), Gautier and Kita-

mura (2010), and semiparametric extensions of McFadden (1974) and Berry, Levinsohn,

and Pakes (1995) type models, e.g., Berry and Haile (2009).

Ordinary random coefficients are the special case of the additive model in equation (2)

in which each Gk is the identity function. Additive models are a common generalization

of linear models; see, Hastie and Tibshirani (1990), Linton (2000), and Wood (2006), and

in the particular applications of additivity to consumer demand systems include Gorman

(1976) and Blackorby, Primont, and Russell (1978). Particularly relevant for this paper

is Matzkin (2003), which in an appendix describes generic, more high level identifying

conditions for a large class of additive models with unobserved heterogeneity.
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This paper also contributes to the literature on estimation of models with nonsepara-

ble errors, in particular where those errors arise from structural heterogeneity parameters

such as random utility parameters. Older examples of such models include Heckman and

Singer (1984) and Lewbel (2001). More recent work focusing on general identification

and estimation results include Chesher (2003), Altonji and Matzkin (2005), Hoderlein, and

Mammen (2007), Matzkin (2007a, 2008), and Imbens and Newey (2009). In particular,

Hoderlein, Nesheim, and Simoni (2011) provide high level conditions for identification

and estimation of models that, like ours, contain a vector of random parameters. Their

results would be applicable to our model if the function G were finitely parameterized

instead of nonparametric.

In our empirical applications, the random coefficients represent equivalence scales in

consumer demand models. There is a long history of using equivalence scales to empiri-

cally model observed sources of preference heterogeneity. See, e.g., Lewbel (1997) for a

survey. Engel (1895) and Barten (1964) type equivalence scales take the form of multi-

plying total expenditures or each price in a demand function by a preference heterogeneity

parameter, as in equation (1). It is therefore a natural extension of this literature to include

unobserved preference heterogeneity in these equivalence scales.

We apply these estimated demand functions to do welfare analyses. In particular, we

use a Barten scaled energy demand function to obtain consumer surplus calculations for

an energy price change (as in Hausman 1981). Our welfare application is essentially a

variant or application of the ideas in Hoderlein and Vanhems (2010, 2011), who introduce

unobserved preference heterogeneity into the Hausman model. The first of these two pa-

pers introduced scalar preference heterogeneity into the model nonparametrically, while

the latter incorporated heterogeneity in the form of ordinary random coefficients. The

difference in our model from Hoderlein and Vanhems (2010, 2011) is that we follow the

prior consumer demand literature by including the preference heterogeneity in the form

of Barten equivalence scales, differing from the prior demand literature in that our Barten

scales include unobserved heterogeneity (a smaller additional difference is the way we

also include an additive measurement error).

Other papers that introduce nonseparable unobserved preference heterogeneity in con-

tinuous demand systems include Brown and Walker (1989), Lewbel (2001), Beckert (2006)

Matzkin (2007b), and Beckert and Blundell (2008). Lewbel and Pendakur (2009) propose

a continuous demand system model in which the standard separable errors equal utility pa-

rameters summarizing preference heterogeneity, and do welfare calculations showing that

accounting for this unobserved heterogeneity has a substantial impact on the results. Lew-

bel and De Nadai (2011) show how preference heterogeneity can be separately identified

from measurement errors. A related empirical model to ours is Comon and Calvet (2003),

who use repeated cross sections and deconvolution to identify a distribution of unobserved
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heterogeneity in income effects.

The next two sections provide our main theorems on identification of equation (2) and

(1). We then provide two empirical applications of the results. The first is a small analysis

of Engel equivalence scales, and the second is a larger study of Barten scales. The latter

application includes a new theorem characterizing the solution to a semiparametric class of

Hausman (1981) type consumer surplus models. These applications are followed by some

additional extensions of our main results to encompass the case of discrete regressors, and

to allow interaction terms with more random coefficients into the additive model. We then

conclude.

2 Additive Model Identification

Our first theorem below shows nonparametric identification of the additive model given by

equation (2) with X = (X1, ...XK ) continuously distributed. Later we extend the results

to allow for discrete X ’s or for more general models.

For any random vectors A and B let FA|B (a | b) and fA|B (a | b) denote the condi-

tional cumulative distribution function and conditional probability density function, re-

spectively, of A given B. Let ek be the K vector containing a one in position k and zeros

everywhere else. Let X(k) denote the K − 1 vector that contains all the elements of X

except for Xk .

ASSUMPTION A1: The conditional distribution FY |X,Z (y | x, z) and the marginal

distribution FZ (z) are identified. (U0,U1, ...,UK ) ⊥ X | Z and (U1, ...,UK ) ⊥ U0 | Z .

Either U0 has a nonvanishing characteristic function or U0 is identically zero. supp (U0) ⊆
supp (Y ) and {0, e1, ..., eK } ⊆ supp (X).

ASSUMPTION A2: Uk, Xk | Z are continuously distributed, and for every r ∈

supp (XkUk) there exists an xk ∈ supp (Xk) such that fUk

(
x−1

k r

)
6= 0.

ASSUMPTION A3: Gk is a strictly monotonically increasing function. The location

and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some known y0 ∈ supp (Y ) are

imposed.

Assumption A1 first assumes identification of FY |X,Z (y | x, z) and FZ (z), which

would in general follow from a sample of observations of Y, X, Z with sample size going

to infinity. Identification of FY |X,Z (y | x, z) is actually stronger than necessary for Theo-

rem 1, since only certain features of this distribution are used in the proof. For example,
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it would suffice to only identify FY |X,Z (y | xkek, z) for k = 1, ..., K . More information

regarding FY |X,Z is used in later extensions to Theorem 1.

Assumption A1 imposes conditional independence and support requirements on U , X

and Z . The role of Z is to permit the error U0 and random coefficients Uk to be correlated

with X , thereby allowing elements of X to be endogenous. With this type of endogeneity,

Z could be control function residuals as in Blundell and Powell (2003, 2004). In particular,

if Xk = hk

(
X(k), Q

)
+ Zk for some observed instrument vector Q and some identified

function hk (typically hk would be E
(
Xk | X(k), Q

)
), then the conditional independence

assumptions in A1 correspond to standard control function assumptions. Note that Z can

be empty, so all the results given below will hold if there is no Z , in which case U is

independent of X and so the regressors X are exogenous.

Theorem 1 does not require that the random coefficients Uk for k = 1, ..., K be (con-

ditional on Z ) independent of each other, however, the Theorem only shows identification

of the marginal distributions of each Uk , not their joint distribution.

Assumption A2 assumes that the regressors and random coefficients are continuously

distributed. An alternative to Assumption A2 allowing for discrete distributions will be

provided later. Assumption A2 also calls for a mild relative support assumption on Xk and

Uk .

The normalizations in Assumption A3 are free normalizations, because first if Gk (0) 6=
0 then we can redefine Gk (r) as Gk (r)− Gk (0) and redefine U0 as U0 + Gk(0), thereby

making Gk (0) = 0. Next, given a nonzero y0 ∈ supp (Y ), there must exist a nonzero r0

such that Gk (r0) = y0. We can then redefine Uk as r0Uk and redefine Gk (r) as Gk (r/r0),
thereby making Gk (1) = y0. These particular normalizations are most convenient for

proving Theorem 1 below, but in applications others may be more natural, e.g., choosing

location to make E (U0) = 0.

THEOREM 1: Let Y =
∑K

k=1 Gk (XkUk)+U0 and let Assumption A1 hold. Then the

distribution function FU0|Z is nonparametrically identified, and for every k ∈ {1, ..., K }
such that Assumptions A2 and A3 hold, the function Gk and the distribution function

FUk |Z are nonparametrically identified.

Identification of FZ was assumed, and Theorem 1 gives identification of FU0|Z and

FUk |Z , and so by combining these the marginal distributions FU0
and FUk

are also identi-

fied.

In applications we would generally assume that Assumptions A2 and A3 hold for all

k ∈ {1, ..., K }, thereby identifying the entire model. However, later we will describe con-

ditions for identification when Xk , Uk , or both are discrete, in which case the assumptions

of Theorem 1 would be assumed to hold just for indices k corresponding to regressors and

random coefficients that are continuously distributed.
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An immediate corollary of Theorem 1 is the following alternative model. This model

could be useful in contexts where Y is always positive, restricting the support of U0 to be

positive.

COROLLARY 1: Let Y =
∏K

k=1 gk (XkUk) + U0 with gk (XkUk) > 0, and let As-

sumption A1 hold. Then the distribution function FU0|Z is nonparametrically identified,

and for every k ∈ {1, ..., K } such that Assumptions A2 and A3 hold with Gk (XkUk) =
ln
[
gk (XkUk)

]
, the function gk and the distribution function FUk |Z are nonparametrically

identified.

3 General Model Identification

We now show identification of the general model given by equation (1) for some unknown

function G. To do so we decompose the function G into an additive component
∑K

k=1 Gk

and a remaining interaction term G̃ having the property that G̃ (Xkek) = 0 for all k. These

two components are then identified separately. Given a function G, define Gk (Xk) =
G (Xkek), that is, Gk equals G after setting all the elements of X except for Xk equal to

zero. Define the function G̃ by G̃ (X) = G (X)−
∑K

k=1 Gk (Xk). Then, by construction,

Y = G̃ (X1U1, ..., XK UK )+
∑K

k=1
Gk (XkUk)+U0 (3)

ASSUMPTION A4: Assume that U0,U1, ...,UK , X are mutually independent condi-

tional upon Z , and that E
(
U t

k

)
6= 0 and is bounded for all integers t . Assume the support

of X includes a positive measure neighborhood of zero. Assume G̃ is a real analytic func-

tion.

THEOREM 2: Let Y = G (X1U1, ..., XK UK )+U0 and let Assumptions A1, A2, A3,

and A4 hold for k = 1, ..., K . Then the function G and the distribution functions FUk |Z

for every k ∈ {0, 1, ..., K } are all nonparametrically identified.

Theorem 1 did not require the random coefficients Uk to be mutually independent,

though only the separate distributions of each Uk were identified. However, to handle non-

additive functions G we require mutual independence given by Assumption A4. Having

E
(
U t

k

)
be nonzero and bounded means that Theorem 2 also places the stronger require-

ments of a nonzero mean and thin tails on each Uk .

Theorem 2 places stronger smoothness assumptions on G̃ than on each Gk . Without

decomposing G into G̃ and Gk terms, a sufficient but stronger than necessary restriction

to satisfy the required assumptions on these functions is that G be analytic and strictly
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monotonically increasing in each of its arguments Uk Xk when the other elements of X are

set to zero.1

However, although the identification proofs are constructive, this conditioning argu-

ment suggests that estimation based on copying the steps of the identification proof is

likely to be inefficient. For example, Theorem 2 identifies G̃ using values of X in a neigh-

borhood of zero. The distribution of Y given X provides information about the unknown

functions at all values of X , which should be employed for efficiency in estimation. How-

ever, for obtaining closed form identification arguments, at points away from zero this

information takes the form of integral equations for G̃ that are difficult to solve.

4 Applications

We have two empirical applications involving consumer demand estimation: incorporation

of heterogeneity via Engel and Barten scaling. These two strategies bring unobserved het-

erogeneity into demand estimation via scaling total expenditures and prices, respectively.

These are two of the most long standing methods used to bring preference heterogeneity

on the basis of observed variables into continuous demand models2 and are consequently

a natural starting point for the incorporation of random utility parameters representing

unobserved preference heterogeneity.

Let a "consumer" refer to a utility maximizing individual or household. Let Q j denote

the quantity purchased of a good j . Let αh denote preference heterogeneity that is a

function of observable consumer attributes h, specifically, we will let α1 and α2 denote

constants corresponding to households having h = 1 or h = 2 members. Let U denote a

vector of random utility parameters representing unobserved preference heterogeneity.

Let S (Q1, ..., Q J ;αh,U ) be the direct utility function over the bundle of goods Q1, ..., Q J

of a consumer having heterogeneity parameters αh and U . Assume S is continuous, non-

decreasing, and quasi-concave in Q1, ..., Q J . Define the reference consumer to be a con-

sumer that has heterogeneity parameters αh and U normalized to equal one. The ref-

erence consumer has utility denoted S (Q1, ..., Q J ). Each consumer chooses quantities

to maximize utility subject to the standard linear budget constraint
∑J

j=1 Pj Q j = M

1The proof of Theorem 2 involves evaluating the distribution of Y given X at X = 0, which is condition-

ing on a set of measure zero. The same applies to Theorem 1 regarding conditioning on Z at a point if Z

is continuous. However, issues of nonuniqueness of the limiting argument (the Borel-Kolmogorov paradox)

do not arise here, since the identification proof depends only on transformations of smooth conditional ex-

pectation functions. It would also be straightforward to recast the proofs in terms of conditioning on ‖ X ‖
≤ c and taking limits c→ 0.

2See, e.g., Pollak and Wales (1990), Lewbel (1997), and Lewbel and Pendakur (2007) for surveys on this

topic.
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where Pj is the price of good j and M is the total amount of money the consumer

spends on this bundle of goods. Write the Marshallian budget share functions that re-

sult from maximizing utility S as W ∗j = ω j (P1/M, ..., PJ/M), where W ∗j = Q j Pj/M

is the share of money M that is spent on good j (called the budget share of good j).

Let V (P1/M, ..., PJ/M) denote the indirect utility function corresponding to S, obtained

by substituting Q j = ω j (P1/M, ..., PJ/M)M/Pj into S (Q1, ..., Q J ) for j = 1, ..., J .

We will express the utility and demand functions for other consumers in terms of these

reference consumer functions.

4.1 Unobserved Heterogeneity in Engel Scales

Our first application considers food budget shares. Let W ∗ = g (M) = ω j (p1/M, ..., pJ/M)
evaluated at some fixed price vector (p1, ..., pJ ), where good j is food, so W ∗ is the food

budget share and g (M) is the food budget share Engel curve for the reference consumer.

Based on empirical regularities noted by Engel (1895), one method of modeling how

Engel curves vary across households is through Engel equivalence scales. See, e.g., Lew-

bel (1997) and Lewbel and Pendakur (2007) for surveys of various types of equivalence

scales in the consumer demand literature, including Engel scales. The traditional Engel

scale for a household of size h is a scalar constant αh that multiplies total expenditures in

each Engel curve, that is, W ∗ = g (αh M).
The Engel scale αh is a direct measure of the economies of scale of household con-

sumption. The idea is that, if a two person household can attain the same utility level

as a single person with only 50% more income, then α2 = 1.5α1. Traditional Engel

scales assume that all households of the same size have the same Engel scale. A more

reasonable assumption is that households vary in their ability to share goods, and even one

person households vary in their ability to derive utility from a given level of consumption,

and hence Engel scales should vary in unobserved ways across households. This is espe-

cially true since, as noted by Hildenbrand (1994), Browning and Carro (2007), and Lewbel

(2007, 2008) among others, there is empirically a great deal of unexplained heterogene-

ity in consumption across households, in fact, the unexplained variation in budget shares

across households is often larger than the variation explained by observed covariates.

In terms of utility functions with observed heterogeneity embodied in αh and unob-

served heterogeneity embodied in U1, Engel scaling is S (Q1, ..., Q J ;αh,U1)= S (Q1U1αh, ..., Q JU1αh).
This model for utility implies that budget share functions take the form W ∗ = g (U1αh M),
where U1 varies randomly across households. The equivalence scale is then U1αh , so αh

is the systematic, observable variation due to variation in household size, and U1 is unob-

served heterogeneity in the Engel scales.

Let W denote a household’s observed food budget share, which may be observed with
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error. Let λ (W ) = ln
[
W/ (1−W )

]
, which denotes the logit transformation of the house-

hold’s budget share. For convenience assume that λ (W ) = λ (W ∗) + U0, where U0 is

measurement (or specification) error in the observed W . The advantage of this formu-

lation is that W and W ∗ have supports on [0, 1], while λ (W ) and λ (W ∗) have supports

on the whole real line, so U0 can have support on the whole real line. In contrast, if we

had specified U0 to be additive in W ∗, then inequality constraints on W and W ∗ would

impose support constraints on U0 that would make it difficult for U0 to be independent of

the regressor M or the Engel scale U1.

Define Y = λ (W ) and G (M) = λ (g (M)). Then we have the logit transformed

budget share Engel curve model

Y = G (U1αh M)+U0.

This model is in the class discussed in Equation (2). To show identification of this model,

replace M with X1, let Z be household size, let K = 1, and apply Theorem 1.3 Then,

given identification of the function G, constants αh , and the distribution of U1, the food

budget share Engel curve is W ∗ = λ−1 (G (U1M)) = 1/
(
1+ e−G(U1 M)

)
.

The unobservables U1 and U0 are assumed to be independent of each other, because

the former is a structural random utility parameter and the latter is measurement error.

Since Engel’s original observations, almost all empirical studies have found food budget

share Engel curves to be monotonic in M , so it is safe to assume as required by Theorem

1 that the food budget share function g and hence the logit transformed budget share G is

strictly monotonic in M .

We estimate the model Y = G (U1αh M)+U0 nonparametrically using sieve maximum

likelihood. For modeling densities using sieves, define the density function pJ (v, θ) given

by squared Hermite polynomials

pJ (v, θ) = φ (v)
(
3J (θ)+

∑J

j=1
θ j H j (v)

)2

where φ (v) is the standard normal density function and H j (v) are the Hermite polynomi-

als

H j (v) =
(−1) j

φ (v)

d jφ (v)

dv j
,

3Theorem 1 identifies the function G, and the conditional distributions of U1 and U0 conditional on

household size Z . The model we have written here assumes in addition that U0 ⊥ Z and U1 | Z = h has the

same distribution as U1αh | Z = 1. Applying the proof of Theorem 1 to this application includes evaluating

G at M = 0. We can equivalently exploit continuity of G and take the limit as M → 0, thereby attaining

identification based on consumers with low rather than actually zero levels of expenditures. Note that, unlike

consumed quantities, the limiting value of budget shares as M → 0 will generally be nonzero. Analogous

arguments applied to price will apply later in our Barten scale application.
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so, e.g., H1 (v) = v, H2 (v) = v2−1, and H3 (v) = v3−3v. To make the density integrate

to one set

3J (θ) =
[
1−

∑J

j=1
( j) θ2

j

]1/2

Following Gallant and Nychka (1987), we model each univariate density using the ex-

pansion pJ (v, θ), letting J → ∞ as n → ∞ for sample size n. Since U0 has support

(−∞,∞) and U1 has support (0,∞), we use pJ (v, θ) to model the densities of the stan-

dardized variables U0/σ 0 and ln U1/σ 1. This makes the sieve basis density functions of

U0 and U1 be f0J and f1J where

f0J (U0, δ, σ 0) =
1

σ 0

pJ

(
U0

σ 0

, δ

)
and f1J (U1, γ , σ 1) =

1

U1σ 1

pJ

(
ln U1

σ 1

, γ

)
respectively, for parameter vectors δ and γ (only J terms of which are estimated).

We model G using polynomial basis functions

GL (m, β) = β0 + β1m + ...+ βLmL

letting L → ∞ as n → ∞. Note that in terms of identifying normalizations, we can if

desired interpret β0 as adding to the mean of U0 rather than as the constant term in G to

enforce G (0) = 0.

For a given household size h, the conditional density function of Y is then

fY |M (y | m;αh, β, γ , δ) =

∫ ∞
0

f0

[
y − G (u1αhm, β) , δ, σ 0

]
f1 (u1, γ , σ 1) du1

Let yi = λ(wi ), and let mi be the household expenditure of household i . Assuming iid

observations yi , mi , hi of consuming households i , estimation then proceeds by substitut-

ing in the sieve functional forms GL , f0J , and f1J for the unknown functions G, f0, and

f1, and searching over parameter vectors α, β, γ , δ and σ to maximize the log likelihood

function ∑n

i=1
ln fY |M

(
yi | mi ;αhi

, β, γ , δ, σ
)

We do not list here the formal assumptions for consistency and asymptotic inference of

sieve maximum likelihood estimation in this application, because the generic conditions

for validity of these estimators in an independently, identically distributed data setting are

well established. See, e.g., Chen (2007) and references therein.4

4Depending on the supports and tail thickness of the model errors and regressors, it is possible in prob-

lems like ours for identification to be weak, in the sense that recovering the structural functions of the model

could entail ill-posed inverse problems. See, e.g., Hoderlein, Nesheim, and Simoni (2011), who document

these issues in a framework similar to ours, though in their model only the error distributions are nonpara-

metric. The assumptions required for standard sieve maximum likelihood inference may rule out at least

some forms of weak identification, though our use of sieves could even then be interpreted as a choice of

regularization for structural function estimation.
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4.2 Empirical Engel Curve Results

We estimate the Engel curve model using Indian household expenditure microdata from

the 2003 National Sample Survey of India (Expenditures Module). Our data file consists

of 3173 observations of households comprised of one or two adults aged 19 to 64. Expen-

ditures are expressed in proportion to average household expenditures of all households

(not just those comprised of one or two adults). We drop households with expenditures

below the 5th and above the 95th percentile of the expenditure distribution. Table 1 gives

summary statistics for food shares wi , total expenditures mi and an indicator di that the

household has 2 members.

Table 1: Summary Statistics: Indian Food Shares

3173 observations mean std dev min max

food share, wi i 0.55 0.14 0.02 0.92

total expenditures, mi 0.44 0.24 0.13 1.18

two-adult household, di 0.54 0.50 0 1

A standard parametric functional form for food Engel curves going back to Working

(1943) is W linear in the log of M . Allowing for traditional constant Engel scales with

households having one or two members gives the functional form W = β0+ln (αh M) β1+
ε = β0 + (ln M) β1 + d (lnα2) β1 + ε where α2 is the traditional Engel scale for a two

person household, and the Engel scale for one person household is α1 = 1. So α2 in this

parametric model can be recovered from a linear regression of W on ln M and on the two

person household dummy d. This regression yields coefficients of−0.14 on ln M and 0.08

on d , giving an Engel equivalence scale of α2 = 0.57. The Engel scale interpretation of

this parameter is that a two person household needs to spend 1/0.57 = 1.75 times as much

money as an individual living alone to attain the same level of utility as the individual.

While having a plausible magnitude, this traditional Engel scale model has two serious

drawbacks: it imposes a parametric structure on W as a function of M and it requires that

the equivalence scale be constant across all households of each size. Our model relaxes

these restrictions.

We estimate the sieve maximum likelihood described in the previous section, with

L = J = 3. This makes the likelihood function to be maximized be∑n

i=1
ln

∫ ∞
0

f0

(
yi − β0 − u1αhi

miβ1 −
(
u1αhi

mi

)2
β2 −

(
u1αhi

mi

)3
β3, δ, σ 0

)
f1 (u1, γ , σ 1) du1

11



where αhi
= diα2 + (1− di ),

f1J (u1, γ ) =
1

u1σ 1

φ

(
ln u1

σ 1

)(
1− γ 2

1 − 2γ 2
2 − 6γ 2

3

)1/2
+

(
ln u1

σ 1

)
γ 1

+

((
ln u1

σ 1

)2

− 1

)
γ 2 +

((
ln u1

σ 1

)3

− 3

(
ln u1

σ 1

))
γ 3

2

f0J (u0, δ, σ 0) =
1

σ 0

φ

(
u0

σ 0

)(
1− δ2

1 − 2δ2
2 − 6δ2

3

)1/2
+

(
u0

σ 0

)
δ1

+

((
u0

σ 0

)2

− 1

)
δ2 +

((
u0

σ 0

)3

− 3

(
u0

σ 0

))
δ3

2

and φ () is the standard normal density function. Evaluating this likelihood requires nu-

merical integration, but just a single one dimension integral is involved, which is not nu-

merically onerous. We implemented this model in Stata. Estimated coefficients are given

below. Standard errors are provided with the caveat that they treat the sieve basis functions

as finite model parameterizations.

Table 2: Estimated Parameters

Parameters of G est sd Parameters of U0,U1 distributions est sd

β0 1.21 0.99 σ 0 0.52 0.04

β1 -7.21 0.94 δ1 -0.12 1.30

β2 9.21 2.44 δ2 -0.21 0.10

β3 -4.06 1.67 δ3 0.01 0.21

α2 0.57 0.02 σ 1 0.44 0.04

γ 1 -0.55 0.03

γ 2 0.29 0.05

γ 3 -0.06 0.02

The equivalence scale is now U1αh . The deterministic part of these scales is α1 = 1 (a

normalization) and α2 = .57, which surprisingly is the same numerical value we obtained

in the simple parametric model above. Thus, for a given value of U1, the Engel equivalence

scale is 0.57.

We find considerable variation in U1 and hence in the equivalence scales across house-

holds of each size. Figures 1 and 2 show the estimated distributions of U0 and ln U1. The

estimated distribution of U0 is roughly symmetric, and somewhat heavy-tailed. The es-

timated distribution of ln U1 is skewed to the left. The implied distribution of U1 is less
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skewed, with a mean of 0.54, median of 0.47, and its 5th and 95th percentiles are 0.25 and

1.02, respectively.

The estimated distribution f1J of U1 has a standard deviation of 0.29 (which is smaller

than σ 1, because the higher order terms in the hermite expansion reduce the variance in this

case). This can be compared to the standard deviation of αhi
= diα2+ (1− di ) α1, which

is 0.21, showing that variation in the traditional equivalence scales αh due just to variation

in household size is somewhat smaller than the variation due to unobserved heterogeneity

U1 across households of each given size.

Figures 3 and 4 show the estimated budget share functions, W ∗, for single- and two-

adult households, respectively, where W ∗ = λ−1 (G (U1αh M)) = 1/
(
1+ e−G(U1αh M)

)
and G is a third-order polynomial. These are shown at various quantiles of the U1 distrib-

ution, illustrating how the Engel curves shift as the Engel scale varies.

5 Random Barten Scales

Our second, larger application of generalized random coefficients will use Barten scales.

Barten (1964) proposed the model in which consumers have utility functions of the form

S(Q1, .., Q J ;αh1, ..., αh J ) = S (Q1/αh1, ..., Q J/αh J ), where αh1, ..., αh J are positive

parameters (functions of observable household attributes h), called Barten scales, that em-

body variation in preferences across consumers. See, e.g., Lewbel (1997) for a survey of

various types of equivalence scales in the consumer demand literature, including Barten

scales. Barten scales are a generalization of Engel scales, specifically, the Barten scale

model becomes equivalent to the Engel scale model when αh1 = αh2 = ... = αh J .

We propose random Barten scales, assuming that consumers have utility functions of

the form S(Q1, .., Q J ;U1, ...,Uh J ) = S (Q1/U1, ..., Q J/UJ ), where U1, ...,UJ are pos-

itive random utility parameters embodying unobserved preference heterogeneity across

consumers. More formally, we could write each random Barten scale as U j (h), since for

each good j , the distribution function U j is drawn from could depend on observable house-

hold attributes h. Barten’s original model is then the special case where the distribution of

each U j (h) is degenerate with a mass point at αhj .

Define normalised prices X j = Pj/M for each good j and rewrite the budget con-

straint as
∑J

j=1 X j Q j = 1. Recall that S (Q1, ..., Q J ) and V (X1, ..., X J ) are the direct

and indirect utility functions of the reference consumer, and that ω j (X1, ..., X J ) is the

Marshallian budget share demand function of the reference consumer. It can be imme-

diately verified from the first order conditions for utility maximization that a consumer

will have Marshallian demand functions of the form W ∗j = ω j (U1 X1, ...,UJ X J ) for

each good j if and only if the consumer’s direct and indirect utility function equal, up to

13



an arbitrary monotonic transformation, S (Q1/U1, ..., Q J/UJ ) and V (U1 X1, ...,UJ X J ),
respectively. Also, given a specification of reference indirect utility V (X1, ..., X J ), the

corresponding Barten scaled demand functions can be obtained by the logarithmic form of

Roys identity:

ω j (U1 X1, ...,UJ X J ) =
∂V (U1 X1, ...,UJ X J )

∂ ln X j

/

(∑J

`=1

∂V (U1 X1, ...,UJ X J )

∂ ln X`

)
(4)

Notice that the functional form of each ω j only depends on the functional form of S or

equivalently of V , so U1, ...UJ can vary independently of X1, ..., X J across consumers.

The Barten scaled Marshallian demand functions have precisely the form of our general-

ized random coefficients given in equation (1).

For households with multiple members, Barten scales can be interpreted as represent-

ing the degree to which each good is shared or jointly consumed. The smaller the Barten

scale U j is, the greater the economies of scale to consumption of good j within the house-

hold. This is then reflected in the demand functions, where smaller Barten scales have

the same effect on demands as lower prices. For example, if a couple with one car rides

together some of the time, then in terms of total distance each travels by car, sharing has

the same effect as making gasoline cheaper. The more they drive together instead of alone,

the lower is the effective cost of gasoline, and the smaller is the couple’s Barten scale for

gasoline.

More generally, Barten scales provide a measure of the degree to which different

households get utility from different goods. Barten scales are a popular method of mod-

eling preference heterogeneity in empirical work. However, up until now, Barten scales

have always been modeled as deterministic functions of observable characteristics of con-

sumers. Here we consider using Barten scales to embody unobserved heterogeneity of

preferences across consumers.

COROLLARY 2: Assume that consumers have preferences given by an analytic,

Barten scaled indirect utility function V (U1 X1, ...,UJ X J ); no good j exists that is Giffen

at some values of X j and not Giffen at others; the conditional distribution FQ|X (q | x)
is identified; and Barten scales U j are each positive with bounded support, satisfy As-

sumption A2 with Z empty, and are mutually independent of each other and of X . Then

the demand functions ω j (U1 X1, ...,UJ X J ) and the distribution functions FU j

(
U j

)
are

identified for J = 1, ..., J .

Corollary 2 shows that consumer demand systems with random Barten scales are non-

parametrically identified. By standard revealed preference theory, the direct and indi-

rect utility functions are therefore also nonparametrically identified up to an unknown

monotonic transformation.
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Corollary 2 refers to Giffen goods. A Giffen good is a good that has a positive own

price elasticity in its Marshallian quantity demand function, and hence an upward sloping

demand curve. Corollary 2 rules out goods that have sometimes positive and sometimes

negative own price elasticities, and hence rules out goods that are sometimes but not al-

ways Giffen. While possible in theory, almost no empirical evidence has been found for

the existence of goods that are Giffen at all, and even less for goods that are only some-

times Giffen.5

Regarding other assumptions in Corollary 2, virtually all empirically implemented con-

sumer demand systems assume functional forms for indirect utility V that are analytic.

Barten scales must be positive to preserve the standard property that utility is increasing

in quantities. Similarly, the economic rationale for Barten scales suggest that they would

be bounded 6

Applying Theorem 2 separately to each demand function would require that each de-

mand function be monotonic in all prices, which does not hold in general. However,

monotonicity in all prices is not necessary for identification here because we have mul-

tiple demand functions, and each contains the same Barten scales. We can therefore use

just the standard monotonicity of own price effects, leaving the signs of cross price effects

unconstrained, to identify the Barten scale distributions. This is done in Corollary 2 by us-

ing the demand function of each good j to just identify the distribution of the Barten scale

U j . The fact that we have multiple equations each containing the same scales means that

the system of equations provides overidentifying information, relative to a single equation

model.

Matzkin, (2007a), (2007b), (2008) discusses identification of systems of equations

where the number of equations equals the number of random parameters, assuming it is

possible to invert the reduced form of the system to express the random parameters as

functions of observables. Although our model has J Barten scales U j and J demand

equations, Matzkin’s identification method for systems of equations cannot be applied

here because there are actually only J − 1 distinct demand functions ω1,...,ωJ−1, with the

remaining demand function ωJ determined by the adding up constraint that
∑J

j=1 ω j = 1.

To simplify our empirical analysis, we let ω1 be the budget share of a single good of

interest, and let ω2 denote the share of all other goods, so ω2 = 1− ω1, corresponding to

the general Barten scaled model with J = 2, and hence only requiring estimation of a sin-

gle equation. Allowing for more goods would provide overidentifying information. This

5The only exception we know of is Jensen and Miller (2008), who show that some grains may have been

Giffen goods for extremely poor households in rural China.
6Boundedness rules out lexicographic preferences in which consumers would not prefer an unlimited

quantity of the good with the unbounded Barten scale over an infinitesimal amount any other good. This is

extemely unlikely to hold when goods are defined as broad categories like food, energy, clothing, etc.
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decomposition of consumption into two good is often done in empirical work when one

wishes to focus on the welfare effects of price changes on a particular good, as we will do

empirically. See, e.g., Hausman (1981), Hausman and Newey (1995), Blundell, Horowitz,

and Parey (2010), and Hoderlein and Vanhems (2010, 2011). This construction is formally

rationalizable by assuming utility is separable into good 1 and a subutility function of all

other goods. See, e.g., Blackorby, Primont, and Russell (1978). Alternatively Lewbel

(1996) provides conditions on the distribution of prices (stochastic hicksian aggregation)

under which Marshallian demand functions have the same properties with nonseparable

utility as with separable utility.

With J = 2 goods, our model is W ∗1 = ω1 (U1 X1,U2 X2) and W ∗2 = 1− W ∗1 , and we

can rewrite Roys identity as

λ
(
W ∗1

)
= ln

(
∂V (U1 X1,U2 X2)

∂ ln X1

)
− ln

(
∂V (U1 X1,U2 X2)

∂ ln X2

)
(5)

where λ
(
W ∗1

)
again is the logit transformation λ

(
W ∗1

)
= ln

[
W ∗1 /

(
1−W ∗1

)]
. This model

falls into the class covered by equation (2). With J = 2 and the adding up constraint

ω1 + ω2 = 1, the single demand equation (5) embodies all the information in the demand

system, and so we don’t need to consider multiple equations as in the proof of Corollary

2.

5.1 Additive Model Random Barten Scales

The regularity conditions for identifying random coefficients in the additive model, given

by Theorem 1, are milder than for the full model of Theorem 2, so we will first consider

identification and estimation of random Barten scales in an additive model, and later con-

sider more general nonadditive specifications.

Due to the constraints of Slutsky symmetry, additivity in Marshallian demand functions

ω1 (X1, X2) results in extreme restrictions on behavior. See, e.g., Blackorby, Primont, and

Russell (1978). So we instead for now impose additivity on the logit transformation of

ω1 (X1, X2) (later this will be relaxed to allow for interaction terms), thereby assuming

demands have the additive form

λ (W1) = λ [ω1 (U1 X1,U2 X2)]+U0 = g1 (U1 X1)+ g2 (U2 X2)+U0 (6)

Here the functions g1 and g2 are nonparametric and U0 is interpreted as measurement error

in the observed budget share W1 relative to the true budget share W ∗1 . This implies that the

underlying demand function is given by

W ∗1 = ω1 (U1 X1,U2 X2) =
(

1+ e−g1(U1 X1)−g2(U2 X2)
)−1

(7)
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Use of the logit transformation here, and assumed additivity in logit transformed bud-

get shares, has as far as we know not been considered before in the estimation of continu-

ous demand functions. However, this logit transformed model has a number of advantages.

First, λ (W1) has support on the whole real line, so the measurement error U0 has unre-

stricted support, instead of a support that necessarily depends on covariates. Second, with

this transform no constraints need to be placed on the range of values the nonparametric

functions g1 and g2 take on. Third, unlike all other semiparametric or nonparametric ap-

plications of the Hausman (1981) consumer surplus type methodology (such as those cited

above), a closed form expression for the indirect utility function that gives rise Marshallian

demands (7) and hence (6) exists, and is given by Theorem 3.

THEOREM 3: The demand function ω1 satisfies λ [ω1 (U1 X1,U2 X2)] = g1 (U1 X1)+
g2 (U2 X2) for some functions g1 and g2 if and only if ω1 is derived from an indirect utility

function of the form

V (U1 X1,U2 X2) = H [h1 (U1 X1)+ h2 (U2 X2) ,U1,U2] .

for some functions h1, h2, and H . The functions g1, g2, h1, and h2 are related by

h1 (U1 X1)+ h2 (U2 X2) =

∫ ln X1

−∞
eg1(U1 X1)d ln X1 +

∫ ln X2

−∞
e−g2(U2 X2)d ln X2 (8)

and

g1 (U1 X1)+ g2 (U2 X2) = ln

(
∂h1 (U1 X1)

∂ ln X1

)
− ln

(
∂h2 (U2 X2)

∂ ln X2

)
(9)

Also, the functions h1 (U1 P1/M) and h2 (U2 P2/M) are each nonincreasing, and their sum

is strictly increasing in M and quasiconvex in P1,P2, and M .

The function H has no observable implications, and is present only because utility

functions are ordinal and therefore unchanged by monotonic transformations. So in prac-

tice we can just write the indirect utility function in Theorem 3 as

V (U1 X1,U2 X2) = h1 (U1 X1)+ h2 (U2 X2) . (10)

Preferences V (X1, X2) are defined to be indirectly additively separable (see, e.g., Blacko-

rby, Primont, and Russell 1978) if, up to an arbitrary monotonic transformation, V (X1, X2) =
h1 (X1)+ h2 (X2) for some functions h1, h2. So an equivalent way to state the first part of

Theorem 3 is that ω1 satisfies equation (7) if and only if preferences are given by a Barten

scaled indirectly additively separable utility function. The second part of Theorem 3 then

provides closed form expressions for the indirect utility function given the nonparametric

(additive in the logit transformation) demand function and vice versa.
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Using Theorem 3, and in particular equation (9), we can nonparametrically estimate

g1 and g2 by nonparametrically specifying h1 and h2 in terms of sieve basis functions (im-

posing the shape restrictions possesed by indirect utility functions if desired) To illustrate,

consider a polynomial in logs sieve basis

ln hk (Uk Xk) =
S∑

s=0

βks (ln (Uk Xk))
s (11)

with constants βks , for k = 1, 2, letting S → ∞ as n → ∞. Logarithmic specifications

like these are common in demand models, e.g., with S = 1 equations (10) and (11) corre-

spond to Barten scaled Cobb Douglas preferences, and with S = 2 this gives a separable

version of the Translog indirect utility function of Jorgenson, Lau, and Stoker (1982),

though in their model the Barten scales have the traditional form of being functions only

of observable characteristics. Having S = 3 without Barten scales corresponds to an

additively separable version of the third-order Translog budget share function as in Nicol

(1984).

In this model we impose the free normalization β20 = 0. This is imposed without

loss of generality, because if β20 6= 0 then we can multiply the indirect utility function

V (U1 X1,U2 X2) by e−β20 (which is a monotonic transformation of V ) and redefine β10

as β10 − β20 to get an observationally equivalent representation of indirect utility that has

β20 = 0. Applying Theorem 3 and equation (6) to this model gives the demand function

λ (W1) = ωS1 (U1 X1,U2 X2, β)+U0 (12)

= β10 +

(
S∑

s=1

[ln (U1 X1)]
s β1s − [ln (U2 X2)]

s β2s

)
+ ln

(∑S
s=1 (ln (U1 X1))

s−1 sβ1s∑S
s=1 (ln (U2 X2))

s−1 sβ2s

)
+U0.

where ωS1 (U1 X1,U2 X2, β) denotes the sieve representation of ω1 (U1 X1,U2 X2) with S

terms in the parameters β. Here, λ (W1) is additive as in (6) since the logged ratio may be

written as a difference of logs.

As in the Engel curve application, we model the density functions of U0 and Uk for

k = 1, 2, by using Hermite polynomial seive densities7

f0J (U0, δ, σ 0) =
1

σ 0

pJ

(
U0

σ 0

, δ

)
and fk J

(
Uk, γ k, σ k

)
=

1

Ukσ k

pJ

(
ln Uk

σ k

, γ k

)
(13)

7We impose the usual assumption that the additive model error U0 is mean zero.

Some algebra reveals that the expected value of U0 for a 3rd order expansion is

σ 0

(
2
((

1− δ2
1 − 2δ2

2 − 6δ2
3

)1/2
− δ2

)
δ1 + 6δ1δ2 + 12δ2δ3

)
,. In our applications we did not find it

useful empirically to include more than J = 3 terms. so we translate U0 in the density f0J by this function

to generate a mean zero distribution for U0.
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For a given consumer with observed values x1 and x2, the conditional density function of

W1 is then

fW1|X1,X2
(w1 | x1, x2;β, σ , δ, γ )

=

∫ ∞
0

∫ ∞
0

f0

[
ln

(
w1

1− w1

)
− ωS1 (u1x1, u2x2, β) , δ, σ 0

]
f1

(
u1, γ 1, σ 1

)
f2

(
u2, γ 2, σ 2

)
du1du2

Assuming independently, identically distributed observations w1i , x1i , x2i of consuming

households i , estimation then proceeds by searching over parameter vectors β, σ , δ, and

γ to maximize the sieve log likelihood function∑n

i=1
ln fW1|X1,X2

(w1i | x1i , x2i ;β, σ , δ, γ ) (14)

5.2 Empirical Additive Model Random Barten Scales

We estimate the model of the previous subsection using Canadian household expenditure

microdata from the 1997 to 2008 Surveys of Household Spending. We consider households

comprised of one adult (as of 31 Dec) aged 25-45 residing in provinces other than Prince

Edward Island (due to data masking). We consider the share of total nondurable expendi-

tures commanded by energy goods, and drop observations whose expenditures on energy

goods are zero, and those whose total nondurable expenditures are in the top or bottom

percentile of the total nondurable expenditure distribution. This leaves 9413 observations

for estimation.

Total nondurable expenditures are comprised of the sum of household spending on

food, clothing, health care, alcohol and tobacco, public transportation, private transporta-

tion operation, and personal care, plus the energy goods fuel oil, electricity, natural gas and

gasoline. Total nondurable expenditures are scaled to equal one at its mean value, which

is a free normalization of units.

Prices vary by province (9 included) and year (12 years) yielding 108 distinct price

vectors for the underlying commodities comprising nondurable consumption. These un-

derlying commodity prices are normalised to equal one in Ontario in 2002. To maximize

price variation, following Lewbel (1989) and Hoderlein and Mihaleva (2008), we con-

struct P1 as the Stone price index using within group household specific budget shares of

energy goods, and P2 is constructed similarly for non-energy goods. These price indices

all have a value of one in Ontario in 2002. Finally, the regressors X1 and X2 are defined

as the prices for energy and non-energy divided by total nondurable expenditure for the

households.

Table 3 gives summary statistics for budget shares, expenditures, prices and normalised

prices.
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We estimate equation (14) in Stata, plugging in equations (12) and (13) with S = 3 and

J = 2. Estimated coefficients are given in Table 4 below. Standard errors are provided

with the same caveat as before.

Table 3: Summary Statistics: Canadian Energy Shares

9413 observations mean std dev min max

energy share, W 0.14 0.09 0.00 0.73

total nondurable expenditure, M 1.00 0.50 0.1 2.90

price of energy goods, P1 1.00 0.23 0.43 2.28

price of nonenergy goods, P2 0.96 0.08 0.76 1.35

energy normalised price, X1 1.31 0.92 0.19 10.27

nonenergy normalised price, X2 1.30 0.94 0.29 9.41

Figures 5 and 6 show the estimated distributions of ln U1 and ln U2. We do not show

the distribution of U0, because it is insignificantly different from a normal (δ1 and δ2 are

jointly insignificant). These two distributions of unobserved heterogeneity parameters are

not far from log normal and hence rather strongly right-skewed, with modes well below

zero.

Table 4: Estimated Parameters, Barten Scales

Parameters of h1 and h2 est se Parameters of U0,U1,U2 distributions est se

β0 -2.144 0.137 σ 0 0.070 0.026

β11 1.046 0.033 σ 1 0.636 0.031

β12 -0.120 0.016 σ 2 0.983 0.045

β13 0.040 0.005 δ1 -0.452 0.925

β21 0.554 0.048 γ 11 -0.663 0.038

β22 0.087 0.010 γ 21 -0.322 0.063

β23 0.024 0.004 δ2 -0.348 0.482

γ 12 0.154 0.038

γ 22 -0.056 0.029

The estimated standard deviations of ln U1 and ln U2 in Figures 5 and 6 are 0.52 and

0.84, (these differ from σ 1 and σ 2 because the γ parameters affect the second moments).

The standard deviations of ln X1 and ln X2 are 0.54, indicating that unobserved preference

heterogeneity in the Barten scales contributes variation to energy demand of the roughly

the same order of magnitude as that contributed by observed variation in prices and total

expenditures across consumers. The standard deviation of the additive error U0 is 0.26,

showing that both additive errors and unobserved preference heterogeneity contribute sub-

stantively to observed variation in demand.

We postpone more thorough empirical analyses to later, when we report estimated

results from a richer model.
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5.3 Interaction Terms in Utility

The additive utility model in Theorem 3, estimated in the previous subsection, restricts

price interaction effects. Using identification based on Theorem 2 instead of Theorem

1, we could instead nonparametrically estimate any sufficiently smooth demand function

ω1 (U1 X1,U2 X2), and identify the function ω1 and distribution of the associated Barten

scales U1 and U2. However, doing so would lose the benefits we gained from Theo-

rem 3 of having closed form expressions for the corresponding indirect utility function

V (U1 X1,U2 X2), which is useful for welfare analyses and convenient for imposing con-

straints associated with utility maximization. We will therefore instead generalize the class

of indirect utility functions given by Theorem 3.

Theorem 3 yielded the indirectly additive utility function V (X1, X2) = h1 (X1) +
h2 (X2). To relaxe the restrictiveness (in terms of cross effects) of additive demand func-

tions, we now consider adding second and third order interaction terms to the model of

Theorem 3, giving an indirect utility function of the form

V (X1, X2) = h1 (X1)+ h2 (X2)+ X1 X2α0 + X2
1 X2α1 + X1 X2

2α2 (15)

For unknown functions h1 (X1) and h2 (X2) along with unknown constants α0, α1, and

α2. Higher order interactions could be similarly identified if necessary, indeed, we could

interpret these interactions as the first terms in a sieve expansion for an arbitrary indirect

utility function. Barten scaling this indirect utility function, substituting the result into

equation (5), and adding the error term U0 as before gives the demand model

Y = ln
[
g1 (U1 X1)+ M1 (U1 X1,U2 X2, α)

]
−ln

[
g2 (U2 X2)+ M2 (U1 X1,U2 X2, α)

]
+U0

(16)

where Y = λ (W1), gk (Uk Xk) = Uk Xk∂h′k (Uk Xk) /∂ (Uk Xk) for k = 1, 2 and

M1 (U1 X1,U2 X2, α) = U1 X1U2 X2α0 + 2U 2
1 X2

1U2 X2α1 +U1 X1U 2
2 X2

2α2, (17)

M2 (U1 X1,U2 X2, α) = U1 X1U2 X2α0 +U 2
1 X2

1U2 X2α1 + 2U1 X1U 2
2 X2

2α2. (18)

Identification of this demand model follows directly from Theorem 3.8

For estimation of the model, we let the functions hk in equation (15) be represented by

the same polynomial in logs sieve basis functions as before. Barten scaling this indirect

8It’s possible to directly prove identification of the demand model of equations (16), (17), and (18) under

weaker conditions than those of Theorem 3. Specifically, identification follows if Assumptions A1, A2,

and A3 hold with Gk (Xk) = ln gk (Xk) for k ∈ {1, 2}, the functions g1 and g2 are differentiable, and

either g′k (0) E (Uk) for k = 1 or for k = 2 is nonzero and finite. See earlier versions of this paper for a

proof.

21



utility function gives, by equation (16), the demand function

λ (W1) = ωS1 (U1 X1,U2 X2, β)+U0 (19)

= ln
[(

eβ10+
∑S

s=1(ln(U1 X1))
sβ1s

) (∑S

s=1
(ln (U1 X1))

s−1 sβ1s

)
+ M1 (U1 X1,U2 X2, α)

]
− ln

[(
e
∑S

s=1(ln(U2 X2))
sβ2s

) (∑S

s=1
(ln (U2 X2))

s−1 sβ2s

)
+ M2 (U1 X1,U2 X2, α)

]
+U0

The demand function given by equation (19) is the same as (12), except for the addition of

the functions M1 and M2 given by equations (17) and (18), which embody the additional

desired price interaction terms. We estimate equation (19) using the same sieve maximum

likelihood method as before.

5.4 Empirical Barten Scales with Interaction Terms

Table 5 presents estimated parameters for the demand equation (19), that is, the Barten

scale model with interaction terms. Again, we use a 2nd order Hermite expansion around

the normal for U0, ln U1 and ln U2, and a 3rd order polynomial in ln X j for G j . In this

model, if any of the interaction coefficients α0, α1, and α2 are negative, then for large

values of either U1 or U2, the utility function will violate monotonicity. In the demand and

likelihood functions, this would make the argument of the log function in Y negative. We

therefore restrict α0, α1, and α2 to be non-negative.

As Table 5 shows, two of the interaction terms are statistically significant (and all

three are jointly significant). For comparison, we also estimated the model imposing the

constraint that U1 = U2 = 1, thereby removing unobserved preference heterogeneity. This

corresponds to a more traditional demand model in which the only error term is additive,

albeit additive in the logit transform of the budget share.

In Figures 7 and 8, we give the estimated densities of ln U1 and ln U2. Here the standard

deviations of ln U1 and ln U2 are 0.44 and 0.81, respectively, which is similar to what we

observed in the model without interaction terms. So after allowing for interaction terms,

unobserved heterogeneity is of similar importance in energy and non-energy preferences.

Recall X j = Pj/M where M is total expenditures. Figure 9 displays estimated energy

budget share functions (Engel curves) evaluated at prices P1 = P2 = 1, for each quartile of

the U1 and U2 distribution. Nine Engel curves are displayed, corresponding to each of the

combinations of one quartile of U1 and one quartile of U2. Each Engel curve was obtained

by simulation, drawing 10,000 observations of total expenditures M from a nonparametric

estimate of the distribution of real expenditure (nominal expenditure deflated by the Stone

index) and evaluating the estimated budget share equations for each given U1 and U2

quartile at each total expenditure M draw. Here, we see that variation in the random Barten

scales U1 and U2 causes substantial shifts in the Engel curves. For comparison, Figure 9
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also displays, with a thick grey line, the Engel curve from a model which imposes U1 =
U2 = 1.

Table 5: Interaction Terms in Utility: Estimated Parameters, Barten Scales

Parameters of h1 and h2 est se Parameters of U0,U1,U2 distributions est se

β0 -2.546 0.174 σ 0 0.166 0.039

β11 1.084 0.056 σ 1 0.540 0.046

β12 -0.143 0.030 σ 2 0.854 0.041

β13 0.056 0.013 δ1 -0.822 1.732

β21 0.947 0.064 γ 11 -0.646 0.072

β22 0.276 0.032 γ 21 -0.482 0.039

β23 0.066 0.008 δ2 0.002 2.517

α0 0.000 0.001 γ 12 0.141 0.063

α1 0.006 0.002 γ 22 0.134 0.016

α2 0.017 0.004

The shape of the Engel curve without unobserved preference heterogeneity in Figure

9 is rather different from those that allow for unobserved preference heterogeneity. For

example, at low expenditure levels, allowing for unobserved preference heterogeneity re-

duces the slope of the energy Engel curve, suggesting that it is not as much of a necessity

as would appear in the absence of such heterogeneity.

Because U1 and U2 affect budget shares in different ways, it is difficult to see the joint

effect of these two unobserved heterogeneity parameters on the distribution of implied

behaviour. We address this in our remaining figures. Figure 10 displays a contour plot of

the density of estimated energy budget shares evaluated at P1 = P2 = 1. This is again

obtained by simulation, based on 10,000 draws of M as before. This time, for each real

expenditure draw we also draw a value of U1 and U2 from their estimated distributions,

and evaluate the estimated energy budget share at these drawn values of M , U1 and U2.

For comparison, we also display, as a thick gray line, the simulated shares from the model

without preference heterogeneity.

The standard deviation of the marginal distribution of energy budget shares is 0.09

in the model which accounts for both unobserved preference heterogeneity and observed

expenditure variation. In contrast, it is only 0.02 in the model which accounts only for

observed expenditure variation. Thus, the variation in budget shares due to heterogeneity

in preferences is large relative to that due to variation in total expenditures.
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5.5 Consumer Surplus Effects of a Carbon Tax

We now apply our model to evaluate the distribution of effects of a large change in the

price of energy, as might result under a carbon tax.9. Using equation (15), even with

nonparametric demand components we have a closed form expression for indirect utility.

We can therefore compute consumer surplus effects without approximations of the type

proposed by Vartia (1984). Instead, we numerically invert the indirect utility function

(15) to obtain the cost of living impact of a price change. We would otherwise need to

numerically solve a differential equation as in Hausman and Newey (1995), but such a

solution would need to be calculated for every value on the continuum of points that U1

and U2 can take on.

The cost-of-living impact for the change from initial prices P1, P2 to new prices

P1, P2, is π
(
U1,U2,M, P1, P2, P1, P2

)
defined as the solution to

V

(
U1 P1

M
,

U2 P2

M

)
= V

(
U1 P1

πM
,

U2 P2

πM

)
.

Here π is the proportionate change in costs M needed to compensate for the energy price

change. To show price effects clearly, we consider a large price change: doubling the price

of energy. So we solve for the π function at the initial price vector P1 = P2 = 1 and the

new price vector P1 = 2, P2 = 1. Figure 11 gives the resulting estimated joint distribution

(contour plot) of lnπ and ln M . This plot is constructed by calculating the surplus for each

of 10,000 draws of U1, U2, and M , and, as in Figure 10, the thick gray line gives estimates

based on the model without preference heterogeneity.

Table 6 gives a numerical version of the information presented in Figure 11. Here,

we present summary statistics on consumer surplus unconditionally for the model with

and without unobserved preference heterogeneity, and conditionally at quartiles of the

expenditure distribution for the model with unobserved preference heterogeneity.

The estimated energy budget shares shown in Figure 10 have an average of 0.14. It has

long been known that first order approximations to cost of living effects of marginal price

changes can be evaluated without estimating demand functions and associated demand

elasticities (see, e.g., Stern 1987). However, the estimated average cost-of-living impacts

given in Table 6 are much less than the value of 0.14 that would be used for first order

approximations, showing that price substitution effects are large. This supports findings

9Our model is not a general equilibrium model, so we are only estimating the consumer’s responses

to a change in energy prices. Moreover, these should only be interpreted as short run responses, since in

the longer run consumers could change their energy elasticities and demand by, e.g., buying more energy

efficient cars and appliances. Also, we just consider a change in the overall price of energy, and so do not

consider impacts of possible changes in the composition of energy goods.
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in, e.g., Banks, Blundell, and Lewbel (1996) that, contrary to the first order approximation

results, it is necessary to estimate demand functions and associated price elasticities to

properly evaluate consumer surplus and welfare effects when price changes are large rather

than marginal.

Table 6: Summary Statistics for Cost of Living Change

Mean Std Dev Lower Qtl Median Upper Qtl

log-cost of living

Overall–without heterogeneity 0.111 0.012 0.105 0.113 0.120

Overall–with heterogeneity 0.128 0.072 0.073 0.120 0.172

At lower Qtl of M (ln M = −0.38) 0.140 0.079 0.070 0.137 0.204

At median of M (ln M = −0.03) 0.130 0.071 0.070 0.123 0.181

At upper Qtl of M (ln M = 0.26) 0.113 0.057 0.068 0.110 0.151

consumer surplus (loss) as a fraction of total nondurable expenditure

Overall–without heterogeneity 0.115 0.042 0.087 0.116 0.144

Overall–with heterogeneity 0.133 0.087 0.066 0.119 0.185

Table 6 also shows that the average cost-of-living impact ascribed to a price change

depends quite substantially on whether or not we account for unobserved preference het-

erogeneity. The model without unobserved preference heterogeneity shows an average

cost-of-living impact of 11.1 per cent. In contrast, when we allow for unobserved prefer-

ence heterogeneity, the estimated average is 12.8 per cent. This difference in the averages

is large, accounting for more than a tenth of the overall impact.

Given that our preferred model has variation in both preferences and budgets, it is not

surprising that the variance of cost-of-living impacts is higher than in the model with just

variation in budgets. However, the magnitude of this difference is surprisingly large. Vari-

ation in budgets (stemming from variation across consumers in prices faced and in total

expenditures) with no preference heterogeneity induces a standard deviation of cost-of-

living impacts of 1.2 percentage points. In contrast, variation in budgets and preferences

in the model with preference heterogeneity induces a standard deviation in cost-of-living

impacts six times as large (7.2 percentage points). Thus, unobserved preference hetero-

geneity is dramatically more important than variation in budgets for this particular policy

experiment.

Another way to see this point is to assess how much variation in cost-of-living impacts

there is at a given level of expenditure. The middle part of Table 6 addresses this. Here, we

see that at the median expenditure level, unobserved preference heterogeneity induces a

standard deviation of 7.1 percentage points, comparable in magnitude to the unconditional

standard deviation. However, it is interesting to note that for richer consumers, unobserved

preference heterogeneity induces less variation in cost-of-living impacts. The standard
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deviation is 5.7 percentage points at the upper quartile of expenditures in comparison with

7.9 percentage points at the bottom quartile cutoff. This shows that, due to nonseparability

of preference heterogeneity, even independently distributed preference heterogeneity may

have effects on economic variables that are correlated with observables.

The bottom panel of Table 6 gives estimates of the negative of total consumer surplus

as a fraction of nondurable expenditure. Whereas the top panel gives averages and quartile

cutoffs for the log cost-of-living at the household level, which under some circumstances

may be taken as a welfare measure (see, Crossley and Pendakur 2010), the bottom panel

gives the sum of the dollar cost changes across all households, expressed as a fraction of

total nondurable expenditure. The bottom panel exponentiates, and weights by household

expenditure. Here, too, we see a similar pattern in the results: accounting for unobserved

preference heterogeneity matters a great deal in the consumer surplus measurement, even

in assessing its sum. Without accounting for unobserved preference heterogeneity, the total

loss in consumer surplus is 11.5 per cent of total nondurable expenditure. Accounting for

preference heterogeneity increases the estimated loss substantially to 13.3 per cent of total

nondurable expenditure.

It is clear from Figure 11 that accounting for unobserved heterogeneity makes a big

difference in our assessment of the consumer surplus associated with an increase in energy

prices. Here, we see that the variance in consumer surplus conditional on total nondurable

expenditure, M , is much larger than the variance across values of M , so accounting for

unobserved heterogeneity has a bigger impact than accounting for observed heterogeneity

in M .

6 Extensions

Theorem 2 provided one extension of our base case additive model of Theorem 1. Here we

consider two alternative extensions. The first concerns identification when some regres-

sors are discrete, while the second looks at identification of models containing additional

random coefficients on interaction terms.

6.1 Discrete Regressors

Much of the literature on nonseparable errors and unobserved heterogeneity focuses on

continuous regressors, but in empirical econometric applications, discrete regressors are

common. Here we extend the results of Theorem 1 to allow for discrete regressors. Define

the random variable Ỹk , the function δk , and the set 9k as follows. Ỹk = Gk (XkUk).
Let δk (xk, z) = 1 if and only if there exists a ỹk ∈ supp

(
Ỹk | X = xkek, Z = z

)
} such
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that FỸk |X,Z
(y0 | ek, z) = FỸk |X,Z

(ỹk | ekxk, z) if xk > 0 or FỸk |X,Z
(y0 | ek, z) = 1 −

FỸk |X,Z
(ỹk | ekxk, z) if xk < 0. Let 9k = {xk : for some z ∈ supp (Z), δk (xk, z) = 1}.

ASSUMPTION A2’: The function FUk |Z (uk | z) is invertible in uk for all uk ∈ supp (Uk | Z = z).
If Gk (r) is known for all r ∈ 9k , then Gk (r) is known for all r on the support of XkUk .

For a given k, Assumption A2’ essentially provides identification for a discrete re-

gressor Xk by taking a value xk that Xk can take on, and finding a value ỹk such that the

distribution FỸk |X,Z
evaluated at ỹk and xkek matches a known value for the distribution at

which Gk is identified by normalization. This is then used to identify the function Gk (r)
at the point r = xk . The set 9k is then the set of all such points for which Gk can be

identified by matching. The last part of Assumption A2’ then assumes that identifying Gk

at all the points in 9k suffices to identify Gk everywhere.

This last condition will hold nonparametrically if 9k contains all the values that XkUk

can take on. This will generally require that Xk and Uk have compable supports. For

example, if Xk and Uk are binary (each taking the values zero or one with strictly posi-

tive probability) and Z is empty, then it is straightforward to verify that Assumption A2’

will hold if there exists a ỹk such that FỸk |X
(y0 | ek) = FỸk |Xk

(ỹk | 0). As this example

shows, unlike Assumption A2, Assumption A2’ does not require Xk or Uk to be contin-

uously distributed. Assumption A2’ could also be used in place Assumption A2 if Xk is

continuously distributed and Uk is not.

Assumption A2’ can alternatively be satisfied if Gk (r) is parameterized to be identifi-

able just from the values of r ∈ 9k . So, e.g., if it is known that Gk (r) = θ k0+θ k1r+θ k2r2,

then as long as 9k contains at least three elements (associated with three different values

of ỹk), Assumption A2’ will be satisfied, because only three points are required to identify

a quadratic. This will suffice for identification even if Uk is continuous and Xk is discrete.

THEOREM 4: Let Y =
∑K

k=1 Gk (XkUk)+U0 and let Assumption A1 hold. Then the

distribution function FU0|Z is identified, and for every k ∈ {1, ..., K } such that Assump-

tions A2’ and A3 hold, the function Gk and the distribution function FUk |Z are nonpara-

metrically identified.

Note that Theorems 1 and 3 can be combined, using Assumption A2’ and Theorem 3

to identify Gk and FUk |Z for indices k in which Xk , Uk , or both are discrete, and using

Assumption A2 and Theorem 1 for identification for the remaining continuous regressors

and random coefficients.
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6.2 Additional random coefficients on interaction terms

Consider models of the form

Y =
(∑K

k=1
Gk (XkUk)

)
+
(∑K−1

j=1

∑K

k= j+1
X j XkU jk

)
+U0 (20)

Equation (20) relaxes the additivity restriction of Theorem 1 by adding pairs of interacting

regressors to interact, and allowing each of these pairs to have their own random coeffi-

cients, in addition to the random coefficients in each Gk (XkUk) term.

Assumptions A1 and A2 are extended to this model as follows. Let e jk be a K vector

that equals one in positions j and k and zero elsewhere. Note that when j = k, e jk = ek .

ASSUMPTION B1: The conditional distribution FY |X,Z (y | x, z) and the marginal

distribution FZ (z) are identified.
(
U0,U1, ...,UK ,U12,U13, ...UK−1,K

)
⊥ X | Z ,(

U1, ...,UK ,U12,U13, ...UK−1,K

)
⊥ U0 | Z , U0,U1, ...,UK are mutually independent

conditional upon Z , and for all j < k,
(
U j ,Uk

)
⊥ U jk | Z . Either U0 has a non-

vanishing characteristic function or U0 is identically zero. supp (U0) ⊆ supp (Y ) and

{0, e11, e12, ..., eK K } ⊆ supp (X). For all j 6= k, Gk (Uk)+ G j

(
U j

)
+U0 has a nonvan-

ishing characteristic function.

ASSUMPTION B2: For k = 1, ..., K : Uk, Xk | Z are continuously distributed, and for

every r ∈ supp (XkUk) there exist an xk on the support of Xk such that fUk

(
x−1

k r

)
6= 0.

For j = 1, ..., K − 1 and k = j + 1, ..., K : U jk, X j Xk | Z are continuously distributed,

and for every r ∈ supp
(
X j XkU jk

)
there exist an x j xk on the support of X j Xk such that

fU jk

(
x−1

j x−1
k r

)
6= 0.

These are all direct extensions of Assumptions A1 and A2, and A3 to include the

interaction terms. The main additional assumptions we now require are that U0,U1, ...,UK

be mutually independent as in Assumption A4, and that U jk to be independent of
(
U j ,Uk

)
conditioning on Z . We then get the following generalization of Theorem 1.

THEOREM 5: Let equation (20) and Assumptions B1, B2, and (for k = 1, ..., K )

A3 hold. Then the distribution function FU0|Z , the regression and distribution functions

Gk and FUk |Z for every k ∈ {0, 1, ..., K }, and the distribution functions FU jk |Z for every

j = 1, ..., K − 1 and k = j + 1, ..., K , are all nonparametrically identified.

The proof of Theorem 5 immediately extends to identification of triplets like X j Xk X`U jk`

added to the model, and similarly for all higher order ’tuples up to the product of all K

regressors.
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7 Conclusions

We have shown nonparametric identification of a generalized random coefficients model,

and provided empirical applications in which the generalized random coefficient structure

arises from extending existing commonly used economic models of observed heterogene-

ity to models of unobserved heterogeneity. In our applications to Engel and Barten scales,

allowing for general forms of unobserved heterogeneity is shown to be important for em-

pirically evaluating the welfare effects of potential policy interventions such as a carbon

tax. For example, we find that failure to account for preference heteregeneity would result

in underestimating the total cost of an energy tax (measured as the effect on total consumer

surplus) by over ten percent, and in underestimating the variation in impacts (measured as

the standard deviation in cost of living impacts across consumers) by over eighty percent.

A straightforward extension of our model is to combine Theorem 1, 2, 4, or 5 with

a special regressor as in Lewbel (2000) to identify discrete choice models like D =
I [V + G (X1U1, ..., XK UK )+U0 ≥ 0], where V is an exogenous regressor with large

support and D is an observed binary dependent variable. In this case, even though Y is not

observed, if V ⊥ U | X Then 1 − E (D | V = v, X = x, Z = z) = FY |X,Z (−v | x, z)
identifies FY |X,Z , and this paper’s theorems can then by applied to identify G and each

Uk distribution. This structure is related to that of Berry and Haile (2009), and could

be useful in applications that involve discrete choices with both substantial unobserved

heterogeneity and substantial nonlinearity in the latent index.

In terms of empirical applications, it would be useful to extend the applications to

collective household models, e.g., our Engel scale application resembles a model for un-

observed variation in resource share allocations, and Barten scales have been applied to

collective models in, e.g., Browning, Chiappori, and Lewbel (2010). Useful areas for fur-

ther work on the theory of generalized random coefficients would be extensions to identify

joint rather than marginal distributions of the random coefficients, and to relax the smooth-

ness assumptions that were imposed for identification of the nonadditive model.

8 Proofs

Before proving Theorem 1, we prove a couple of lemmas.

LEMMA 1: Let Ỹk = Gk (XkUk) where Gk is a strictly monotonically increasing

function. Assume Uk ⊥ X | Z . The marginal distributions of Uk and Xk are continuous.

The support of Xk includes zero, the support of Uk is a subset of the support of Ỹk , and

for every r such that Gk (r) is on the support of Ỹk there exist an xk on the support of

Xk such that fUk

(
x−1

k r

)
6= 0. Assume the location and scale normalizations Gk (0) = 0
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and Gk (1) = y0 for some known y0 in the support of Ỹk are imposed. Let r = Hk (ỹk)
be inverse of the function Gk where ỹk = Gk (r). Define X(k) to be the vector of all the

elements of X except for Xk . Define the function Sk (ỹk, x̃) by

Sk (ỹk, x̃) = E

[
FỸk |Xk ,X(k),Z

(
ỹk | x̃

−1, 0, Z

)]
=

∫
supp(Z)

FỸk |Xk ,X(k),Z

(
ỹk | x̃

−1, 0, z
)

fz (z) dz.

Then

Hk (ỹk) = sign

sign (xk)
∂Sk

(
ỹk, x−1

k

)
∂x−1

k

 exp

∫ ỹ

y0

xk∂Sk

(
ỹk, x−1

k

)
/∂ ỹ

∂Sk

(
ỹk, x−1

k

)
/∂x−1

k

d ỹk

 (21)

Note that if Z is discretely distributed, then the integral defining Sk becomes a sum. If

Z is empty (so Uk and X are unconditionally independent) then Sk (ỹk, x̃) = FỸk |Xk ,X(k)

(
ỹk | x̃−1, 0

)
.

The main implication of Lemma 1 is that if the distribution FỸk |X,Z
is identified, then the

function Hk is identified by construction.

PROOF of Lemma 1: For any ỹk and any xk > 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)
= Pr

(
Uk ≤ x−1

k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)
= FUk |Xk ,X(k),Z

[
x−1

k Hk (ỹ) | xk, 0, z
]
= FUk |Z

[
x−1

k Hk (ỹ) | z
]

where the last equality uses Uk ⊥ X | Z . Similarly for any xk < 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)
= Pr

(
Uk ≥ x−1

k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)
= 1− FUk |Z

[
x−1

k Hk (ỹ) | z
]

Together these equations say

FUk |Z

[
x−1

k Hk (ỹk) | z
]
= I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z) .

So

FUk

[
x−1

k Hk (ỹk)
]
=

∫
supp(Z)

[
I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z)
]

f (z) dz.

= I (xk < 0)+ sign (xk) S

(
ỹk, x−1

k

)
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It follows that for any xk 6= 0,

∂S

(
ỹk, x−1

k

)
∂x−1

k

= sign (xk) fU

[
x−1

k Hk (ỹk)
]

Hk (ỹk)

and

∂S

(
ỹk, x−1

k

)
∂ ỹk

= sign (xk) fU

[
x−1

k Hk (ỹk)
]

x−1
k

∂Hk (ỹk)

∂ ỹk

So for fU

[
x−1

k Hk (ỹk)
]
6= 0 it follows that

xk∂S

(
ỹk, x−1

k

)
/∂ ỹk

∂S

(
ỹk, x−1

k

)
/∂x−1

k

=
∂Hk (ỹk) /∂ ỹk

Hk (ỹk)
=
∂ ln |Hk (ỹk) |

∂ ỹk

so

exp

∫ ỹk

y0

xk∂S

(
ỹk, x−1

k

)
/∂ ỹk

∂S

(
ỹk, x−1

k

)
/∂x−1

k

d ỹk

 = exp

(∫ ỹk

y0

∂ ln |Hk (ỹk) |

∂ ỹk

d ỹv

)
= exp (ln |Hk (ỹk) | - ln |Hk (ỹ0) |) = |Hk (ỹk) |

where Hk (ỹ0) = 1 follows from Gk (1) = ỹ0. Finally

sign

sign (xk)
∂S

(
ỹk, x−1

k

)
∂x−1

k

 = sign

(
sign (xk) sign (xk) fU

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)

= sign

(
fU

[
x−1

k Hk (ỹk) | z
]

Hk (ỹk)
)
= sign (Hk (ỹk))

So the right side of equation (21) equals sign (Hk (ỹk)) |Hk (ỹk) | = Hk (ỹk) as claimed.

LEMMA 2: If Assumption A1 holds, then FU0|Z and the distribution function FỸ |X,Z

(
Ỹ | x, z

)
are identified, where Ỹ =

∑K
k=1 Gk (XkUk).

PROOF of Lemma 2:

FY |X,Z (y | 0, z) = Pr (G (0)+U0 ≤ y | X = 0, Z = z) = FU0|X,Z (y | 0, z) = FU0|Z (y | z)
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identifies the distribution function FU0|Z on the support of Y , which contains the support

of U0. Next define Ỹ = Y −U0. Then since Y = Ỹ +U0 and the distributions of Y | X, Z

and U0 | X, Z are identified, for each value of X = x, Z = z apply a deconvolution (using

the nonvanishing characteristic function of U0) to identify the distribution of Ỹ | X, Z ,

where Ỹ =
∑K

k=1 Gk (XkUk).

PROOF of Theorem 1: When X(k) = 0 (equivalently, when X = ekxk for some xk)

we get Ỹ = Gk (XkUk) +
∑

j 6=k Gk (0) = Gk (XkUk). Define Ỹk = Gk (XkUk). It

follows that FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = FỸ |X,Z (ỹk | xkek, z), so the distribution func-

tion on the left of this identity is identified, given by Lemma 1 that FỸ |X,Z is identi-

fied. Let r = Hk (ỹ) denote the inverse of the function Gk where ỹ = Gk (r). It

follows by construction from Lemma 1 that Hk (ỹ) is identified for every value of ỹk

on the support of Ỹk satisfying the property that, for some xk on the support of Xk ,

fUk

[
x−1

k H (ỹ)
]
6= 0. This identification of Hk (ỹ) in turn means that the function Gk (r)

is identified for every r such that Gk (r) is on the support of Ỹk and there exist an xk on

the support of Xk such that fUk |Z

(
x−1

k r

)
6= 0. This then implies identification of Gk on

its support. Finally, given identification of FỸ |X,Z and of Hk (ỹk), the distribution function

FUk |Z is identified by FUk |Z
[
H (ỹ) /xk | z

]
= FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z) for xk > 0 and

FUk |Z
[
H (ỹ) /xk | z

]
= 1− FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z) for xk < 0.

PROOF of Corollary 1: Applying the proof of Lemma 2 to the model of Corollary

1 shows that FU0|Z and the distribution function F˜̃
Y |X,Z

(˜̃
Y | x, z

)
are identified, where˜̃

Y =
∏K

k=1 gk (XkUk). It therefore follows that FỸ |X,Z

(
Ỹ | x, z

)
is identified where

Ỹ = ln
(˜̃
Y

)
=
∑K

k=1 ln
[
gk (XkUk)

]
=
∑K

k=1 Gk (XkUk), and the remainder of the iden-

tification therefore follows applying the proof of Theorem 1.

PROOF of Theorem 2: By construction, the function G̃ (X1U1, ..., XK UK ) is zero

when evaluated at X = 0 or at X = Xkek for any k, so evaluated at any such value of X ,

equation (3) is equivalent to equation (2). For equation (2), the proof of Theorem 1 showed

identification of the marginal distributions of each Uk and each function Gk only using

X = 0 and X = Xkek , so these functions are also identifed for equation (3). What remains

is to identify the function G̃. Define R (X) = E
[
G̃ (X1U1, ..., XK UK ) | X

]
. The func-

tion R (X) is identified for all X because R (X) = E

[
Y −

∑K
k=1 Gk (XkUk)−U0 | X

]
,

which depends only on the already identified distributions and functions. For nonnegative
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integers t1, ...tK define Rt1,...tK by

Rt1,...tK (x) =
∂ t1+...+tK R (x)

∂x
t1
1 ...∂x

tK
K

and similarly for G̃ t1,...tK . Then

Rt1,...tK (x) = E
(
U

t1
1 , ...,U

tK
K G̃ t1,...tK (x1U1, ..., xK UK )

)
so G̃ t1,...tK (0) = Rt1,...tK (0) /E

(
U

t1
1 , ...,U

tK
K

)
is identified for all sets of nonnegative in-

tegers t1, ...tK . Now G̃ is analytic so can write the Maclaurin series

G̃ (r) =
∞∑

t1=0

...
∞∑

tK=0

r
t1
1 ...r

tK
K G̃ t1,...tK (0)

(t1 + ...+ tK )

which shows that the function G̃ (r) is identified, since G̃ t1,...tK (0) is identified for all sets

of nonnegative integers t1, ...tK .

PROOF of Corollary 2: For a given j ∈ {1, ..., J } let Y = −Q j if j is not a

Giffen good, otherwise let Y = Q j . Then the function G in Theorem 2 is given by

−ω j (U1 X1, ...,UJ X J ) /U j X j which makes the function and G j in Theorems 1 and 2

be −ω j

(
0, ..., 0,U j X j , ..., 0

)
/U j X j (remove the minus signs if the good j was Giffen).

Then G j is strictly monotonically increasing, and we have taken U0 = 0, so by The-

orem 1, the distribution function FU j |Z is identified. Repeating this procedure for each

j ∈ {1, ..., J } identifies all of the FU j |Z distributions. Given identification of all of the

FU j |Z distributions, we can now apply the remainder of the proofs of Theorems 1 and 2 to

each demand function Q j X j = ω j (U1 X1, ...,UJ X J ) for j ∈ {1, ..., J } to identify each

function ω j , observing that by Roys identity (and boundedness of budget shares) each

ω j will be analytic, and having each U j be positive and bounded makes the remaining

assumptions of Theorem 2 hold.

PROOF of Theorem 3: As discussed in the text, a property of Barten scales (which

can be readily verified using Roys identity) is that, if V (X1, X2) is the indirect util-

ity function corresponding to the demand function ω1 (X1, X2), then up to an arbitrary

monotonic transformation H (V,U1,U2) of V , the indirect utility function corresponding

to ω1 (U1 X1,U2 X2) is V (U1 X1,U2 X2), and vice versa. It therefore suffices to prove that

the theorem holds with U1 = U2 = 1.

By equation (4), given any indirect utility function V , the corresponding demand func-

tion ω1 is given by

ω1 (X1, X2) =
∂V (X1, X2) /∂ ln X1[

∂V (X1, X2) /∂ ln X1

]
+
[
∂V (X1, X2) /∂ ln X2

]
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Similarly, given any demand function ω1, if this equation holds then V equals, up to an

arbitrary monotonic transformation, the indirect utility function that corresponds to ω1. It

follows that

λ [ω1 (X1, X2)] = ln

(
∂V (X1, X2)

∂ ln X1

)
− ln

(
∂V (X1, X2)

∂ ln X2

)
(22)

Given any functions g1 (X1) and g2 (X2), define a corresponding function V (X1, X2)
by

V (X1, X2) =

∫ ln X1

−∞
eg1(X1)d ln X1 +

∫ ln X2

−∞
e−g2(X2)d ln X2. (23)

Substituting equation (23) into equation (22) gives

λ [ω1 (X1, X2)] = g1 (X1)+ g2 (X2) (24)

which shows that, up to monotonic transformation, equation (23) is the indirect utility

function that generates the demand equation (24). Since equation (23) is additive, this

shows that the indirect utility function that generates the demand equation (24) is additive.

To go the other direction, given any differentiable functions h1 (X1) and h2 (X2), if

V (X1, X2) = h1 (X1)+ h2 (X2) equation (22) equals

λ [ω1 (X1, X2)] = ln

(
∂h1 (X1)

∂ ln X1

)
− ln

(
∂h2 (X2)

∂ ln X2

)
(25)

which is in the form of equation (24), showing that any additive indirect utility function

generates a demand equation in the form of (24).

Together these results prove the first part Theorem 3. Adding back the Barten scales

U1 and U2 to the functions g1, g2, h1, and h2 proves equations (9) and (8). The properties

of the functions h1 and h2 given at the end of Theorem 2 follow from the fact that the

indirect utility function h1 (U1 P1/M)+h2 (U2 P2/M)must possess the standard properties

of all indirect utility functions, i.e., homogeneity and quaisconvexity in P1,P2, and M ,

nondecreasing in each price, and increasing in M .

PROOF of Theorem 4: When X(k) = 0 we get Ỹ = Gk (XkUk) +
∑

j 6=k Gk (0) =

Gk (XkUk). Define Ỹk = Gk (XkUk). It follows that FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = FỸ |X,Z (ỹk | xkek, z),

so FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) is identified, given by Lemma 1 that FỸ |X,Z is identified. Let

r = Hk (ỹk) be inverse of the function Gk where ỹk = Gk (r). Now consider any particu-

lar positive xk ∈ 9k . For that xk we have FỸk |X,Z
(y0 | ek, z) = FỸk |X,Z

(ỹk | ekxk, z) and
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since the function FỸk |X,Z
is identified, the particular value ỹk that satisfies this equation

is identified. Then

Pr (Gk (xkUk) ≤ ỹk | X = xkek, Z = z) = Pr (Gk (Uk) ≤ y0 | X = xkek, Z = z)

= Pr (Gk (Uk) ≤ y0 | Z = z)

FUk |Z
[
Hk (ỹk) /xk, z

]
= FUk |Z

[
Hk (y0) , z

]
similarly, if we have a given negative xk ∈ 9k then

1− Pr (Gk (xkUk) ≤ ỹk | X = xkek, Z = z) = Pr (Gk (Uk) ≤ y0 | X = xkek, Z = z)

1− Pr (Uk ≥ Hk (ỹk) /xk | X = xkek, Z = z) = Pr (Uk ≤ Hk (y0) | Z = z)

FUk |Z
[
Hk (ỹk) /xk, z

]
= FUk |Z

[
Hk (y0) , z

]
By invertibility of FU1|Z these equations show that for any xk ∈ 9K we get Hk (ỹk) /xk =
Hk (y0) where the ỹk corresponding to the given xk is known. Now Gk (1) = y0 means

that Hk (y0) = 1, so Hk (ỹk) = xk , and therefore ỹk = Gk (xk), so the value of the function

Gk evaluated at this particular xk is known. This holds for any and hence all xk ∈ 9k , so

by Assumption A2’ this suffices to identify the function Gk everywhere, and hence also

identifies the function Hk everywhere.

Given identification of FỸ |X,Z and of Hk (ỹ), the distribution function FUk |Z is identi-

fied by FUk |Z
[
H (ỹk) /xk | z

]
= FỸk |X,Z

(ỹk | ekxk, z) for xk > 0 and FUk |Z
[
H (ỹk) /xk | z

]
=

1− FỸk |X,Z
(ỹk | ekxk, z) for xk < 0.

PROOF Theorem 5: First observe that Lemma 2 still holds in this model, identifying

FU0|Z by taking X = 0. Similarly, all the interaction terms X j Xk equal zero when X =
ekxk for any k, so the proof of Theorem 1 goes through to identify each FUk |Z and Gk

function. Next, for each j, k pair evaluate the model at X = e jk to get Y = V jk + U jk

where V jk = U0+Gk (Uk)+G j

(
U j

)
At this stage the distribution of V jk | Z is identified

(because each component is identified), so FU jk |Z can be identified by a deconvolution of

Y | Z with V jk | Z .
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