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Abstract

We conduct misspeci�cation analyses for four treatment e¤ects estimators, the instrumental variable

estimator (IVE), the instrumental variable quantile regression estimator (IV-QRE), the least squares

estimator (LSE) and the quantile regression estimator (QRE), in the framework of Heckman and Vytlacil

(2005). We �rst derive the pseudo-true values which shed more light on why the IVE and IV-QRE are

consistent when the essential heterogeneity is absent and why the LSE and QRE are consistent when

the selection e¤ect is further excluded. Speci�cally, when the essential heterogeneity is absent, the IVE

is consistent because of an o¤setting property, while the IV-QRE is consistent due to a counterfactual-

quantiles matching property inherited from rank similarity. For the LSE and QRE, we decompose the

bias into two components - one from the selection e¤ect and the other from the essential heterogeneity,

so only if both sources of endogeneity are excluded can consistency be achieved. This decomposition

also makes it clear that the bias from the selection e¤ect spreads over all subpopulations, regardless of

identi�able or not, which explains why the IVE and IV-QRE need extrapolation to achieve consistency.

We then check two responses to model misspeci�cation. First, we conduct a local sensitivity analysis

(LSA) which provides a measure of sensitivity when the key identi�cation assumption is locally perturbed

along a prespeci�ed direction. To avoid specifying the perturbation direction, we suggest to report the

LSA for the most sensitive direction in practice. Second, we summarize the sharp bounds for the average

treatment e¤ect in the literature and develop corresponding bounds for the quantile treatment e¤ect.

We illustrate our analyses by studying the e¤ect of veteran status on earnings in Angrist (1990).
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"Essentially, all models are wrong, but some are useful."

Box and Draper (1987), p. 424

1 Introduction

Any econometric model is based on econometricians�past experiences (and/or past literature which is based

on further past experiences and literature), i.e., any model is the result of an interaction of subjectivity and

objectivity rather than a genuine re�ection of objectivity. On the other hand, econometric models are built

by human beings and so a good econometric model should be helpful to aid understanding of the reality for

human beings. Modeling means structures/assumptions beyond simple data description; to be more straight,

modeling is a kind of belief although we try to make our belief close to the reality.1 Certainly, belief is not

reality, so any model is potentially wrong; nontheless, to delve into the essence of a problem, modeling is

sometimes inevitable. More structures are imposed in a model, potentially farther from the reality is the

model.

Econometricians keep eyes on model misspeci�cation for a long time. To adapt to the needs of applica-

tions, they use a range of models, from fully nonparametric to fully parametric. The recent trend is to impose

fewer structures (i.e., more nonparametric) such that the misspeci�cation problem can be alleviated or the

model is more robust to misspeci�cation. In general, there are four responses to model misspeci�cation.

First, use a more structured model while admit that the model is possibly misspeci�ed and check what the

estimator would converge to under misspeci�cation. The probability limit of the estimator is often termed as

the pseudo-true value, so we label this response as pseudo-true analysis. This tradition dates back (in econo-

metrics) at least to Halbert White�s pioneering work in the 1980s. For example, White (1980, 1981) study

the misspeci�cation problem in the OLS estimation given that the conditional mean may not take the linear

form of covariates; White (1982) examines the consequences and detection of model misspeci�cation when

using maximum likelihood techniques for estimation and inference. Later, in the GMM framework, Hall and

Inoue (2003) study the consequences of misspeci�cation and develop the asymptotics for the pseudo�true

parameters; in quantile regression, Angrist et al. (2006) study the estimation and inference in a misspeci�ed

model. Second, �nd some "smart" su¢ cient conditions for point identi�cation; see, e.g., Matzkin (1994,

2007) for a summary of literature and Matzkin (2013) and Lewbel (2016) for an introduction.2 Generally

speaking, the "key" identi�cation conditions must be carefully examined. In a nonparametric setup, such

an examination seems rare (maybe because such conditions are already hard to �nd and also because the

setup is already nonparametric), while in a more structured setup, there are usually two ways to check the

validity or robustness of these conditions. The �rst way is to check whether these conditions are consistent

with the data, so-called misspeci�cation testing or goodness-of-�t testing. The literature dates back at least

to Ramsey (1969, 1970)�s RESET in econometrics and to Karl Pearson (1900)�s chi-square test in statistics.

The literature on this topic is vast, see Holly (1987), Godfrey (1988) and White (1987, 1994) for a summary

of early literature and Gonzáez-Manteiga and Crujeiras (2013) for a summary of recent developments. The

second way is to check the sensitivity of the identi�ed parameter to these conditions. Such a checking seems

routine for applied econometricians, see, e.g., Mroz (1987) for an early example. The treatment e¤ect liter-

ature of sensitivity analysis dates back at least to Corn�eld et al. (1959); see Glynn et al. (1986) for the

Bayesian method and Robins et al. (2000) and Rosenbaum (2002) for a variety of sensitivity analyses in the

statistical literature; see Vijverberg (1993) for sensitivity analysis in a Roy model and Athey and Imbens

1From the philosophical perspective, there is nothing called "reality" or "objectivity". Anything must involve subjectivity;
otherwise, how can we understand it? So the commonly called "objectivity" is subjective objectivity indeed.

2Early literature of identi�cation concentrates on identi�cation of simultaneous equations system; see, e.g., Hausman (1983)
and Hsiao (1983) for a summary of literature.
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(2015) and references therein for recent developments in the econometric literature. Third, allow the model

to be partially identi�ed, i.e., the identi�ed objects are sets rather than points.3 This part of literature

builds on insights in early literature by Peterson (1976) and Holland (1986a) and was developed by Charles

Manski and his co-authors in the 1990s and 2000s; see Manski (1995, 2003, 2007) for a summary and Tamer

(2010) for an introduction to the literature. Fourth, select the true model or average a sequence of models;

see Claeskens and Hjort (2008) for an introduction. Some of the four responses are interwined, e.g., the

goodness-of-�t testing is closely related to model selection.

This paper tries to examine the four responses to model misspeci�cation in the treatment e¤ects eval-

uation. It is well known that one main objective of microeconometrics is to explore causal relationships

between a response variable and some covariates. As a result, treatment e¤ects evaluation is a main task for

micro-econometricians. Usually, causal inference takes the potential outcomes approach rather than regards

the treatment status as a usual covariate. This approach goes back at least to Neyman (1923, 1935) and

Fisher (1918, 1925, 1935) on agricultural experiments, but the modern version is usually attributed to Rubin

(1974, 1978), so this framework is often termed as the Neyman-Fisher-Rubin causal model. The literature

on this topic is tremendous. Roughly speaking, one strand of literature emphasizes "e¤ects of causes" and is

more reduced-formed, and another strand emphasizes "causes of e¤ects" and is more structural. The former

is the tradition of statistics and is borrowed to econometrics, see Holland (1986b) for a historical view and

Imbens and Wooldridge (2009) and Imbens and Rubin (2015) for a summary of literature on this tradition.

The latter is developed by James Heckman and his co-authors in the 1980s and 1990s; see Heckman and

Vytlacil (2007a, b) for a summary of relevant literature on this tradition. The distinction between these two

traditions makes their interpretation of treatment e¤ects estimates quite di¤erent; nevertheless, the econo-

metric techniques they use are often overlapped or intertwined. Careful assessment of these two traditions is

out of the scope of this paper; rather, we con�ne ourselves to the mathematical side of these two traditions,

which seems to have more in common.

We will examine four treatment e¤ects estimators in the framework of Heckman and Vytlacil (2005) (HV

hereafter) which allows for both the selection e¤ect (i.e., the untreated outcome may depend on the treatment

status, which is the usual endogeneity problem) and the essential heterogeneity (i.e., the treatment status may

depend on idiosyncratic gains, which is new for treatment e¤ects evaluation). This framework is equivalent

to the framework used in the �rst tradition (e.g., the setup of Imbens and Angrsit (1994) (IA hereafter))

in some sense; see Yu (2015b) for a bare comparison of these two frameworks. The four estimators are the

instrumental variable estimator (IVE), the instrumental variable quantile regression estimator (IV-QRE),

the least squares estimator (LSE) and the quantile regression estimator (QRE). The IVE and LSE attempt

to estimate the average treatment e¤ect (ATE) and the IV-QRE and QRE attempt to estimate the quantile

treatment e¤ect (QTE). The IVE in this general framework is examined �rst by IA where the instruments

are discrete. When the instrument is binary, the IVE is estimating the treatment e¤ect for a subpopulation

called compliers, so-called the local average treatment e¤ect (LATE); when the instrument is multi-valued, it

is estimating an average of LATEs. HV�s framework allows for more general instruments so that the average

treatment e¤ect for a marginal population, so called the marginal treatment e¤ect (MTE), can be identi�ed,

and the LATE can be expressed as a weighted average of MTEs.4 Only if the essential heterogeneity is

absent (or the endogeneity is present only in the form of selection e¤ect), the IVE is estimating the ATE;

otherwise, the ATE can only be partially identi�ed. Excluding the essential heterogeneity is quite useful

in practice, e.g., Angrsit and Fernández-Val (2013) essentially impose this restriction to extrapolate the

3A weaker version of partial identi�cation is weak identi�cation where the parameter is only "locally" unidenti�ed, e.g., the
weak instruments problem.

4This does not mean IA did not explore the general instruments case, see, e.g., Angrist et al. (2000) for the continuous
instruments scenario, where they also show that the MTE is a limit form of the LATE.
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LATE estimation. The IV-QRE is put forward in Chernozhukov and Hansen (2005) (CH hereafter). After

imposing a key rank invariance or rank similarity assumption, they show that the QTE can be identi�ed

by the IV-QRE. We examine this key assumption carefully in this paper and show that this assumption

essentially excludes the essential heterogeneity in the context of QTE. In other words, the IV-QRE is the

quantile counterpart of IVE. Finally, the LSE can identify the ATE and the QRE can identify the QTE only

if neither the selection e¤ect nor the essential heterogeneity is present. They are useful in practice because

valid instruments are hard to �nd in applications while they can achieve identi�cation without instruments

when the required conditions are satis�ed.

For each of the four estimators, we presume they are estimating the "global" treatment e¤ects (i.e., the

ATE or the QTE), so the model is misspeci�ed. We examine the four responses to model misspeci�cation in

this speci�c context. First, we derive the pseudo-true value of each estimator, which allows us to shed more

light on why each estimator is consistent to the parameter of interest when the required restrictions discussed

above are imposed. It turns out that the IVE can identify the two counterfactual means in an intriguing way.

It extrapolates the mean of an identi�able subpopulation to the unidenti�able subpopulation, and meanwhile

uses an weighted average of the two counterfactual means for the identi�able subpopulation to replace the

genuine mean. Both may induce bias, but these two biases luckily o¤set each other when the essential

heterogeneity is excluded so that a consistent estimator is achieved. The IV-QRE also extrapolates to achieve

consistency but in a di¤erent way. It turns out that under rank similarity, the two marginal counterfactual

cumulative distribution functions (cdfs), i.e., the cdfs for a marginal population, and the two population

counterfactual cdfs satisfy a very lucky relationship which we label as counterfactual-quantiles matching ;

this relationship guarantees the consistency of IV-QRE in estimating the two population counterfactual

cdfs. For both estimators, we concentrate on using the propensity score as the instrument, but we also point

out the di¤erence when a general instrument is used. As to the LSE and QRE, we decompose the bias

under misspeci�cation into two components, one from the selection e¤ect and the other from the essential

heterogeneity, which makes it clear why only if both sources of endogeneity are excluded can consistency

be achieved. This decomposition also makes it clear that the bias from the selection e¤ect spreads over all

subpopulations, regardless of identi�able or not, which explains why the IVE and IV-QRE need extrapolation

to achieve consistency. Second, we conduct a di¤erent kind of sensitivity analysis from those mentioned

above, called the local sensitivity analysis (LSA), to assess fragility of the estimators to their corresponding

key identi�cation assumptions. This kind of analysis is meaningful because specifying a model is usually

based on past experiences and the speci�cation should be close to reality (otherwise, why use a very wrong

model?); in other words, possible misspeci�cations are only local. Our sensitivity analysis is in the spirit of

Carneiro et al. (2010). Speci�cally, we perturb the identi�ed system a little bit (or locally) in a prespeci�ed

direction and check how sensitive the identi�ed parameter is to such a local perturbation; in other words,

a path derivative is developed. Such a path derivative is standard in semiparametric e¢ ciency analysis,

so the LSA can be treated as an extension of the path derivative there to a more general context. Most

importantly, all components in the path derivative (excluding the direction which needs to be prespeci�ed)

can be estimated from the data, so the LSA is very practical and is suggested to become a routine analysis

whenever a key identi�cation assumption is imposed. To avoid specifying the perturbation direction, we

suggest to report the LSA for the most sensitive direction in practice and provide algorithms to calculate

it. Third, we conduct some partial identi�cation analysis when the general framework of HV is maintained.

As previously mentioned, the ATE and QTE cannot be point identi�ed now. Heckman and Vytlacil (2001b)

develop sharp bounds for the ATE, and we conduct a parallel analysis and develop sharp bounds for the

QTE. These bounds can be used to assess the validity of the identi�cation assumptions.

By passing, we mention that we do not discuss the misspeci�cation testing in this paper because there have
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already been some related developments in the literature. For example, Angrsit and Fernández-Val (2013)

check the presence of essential heterogeneity by the popular J-test, Heckman et al. (2010) and Heckman and

Schmierer (2010) develop a few conditional moment tests for the same purpose, and the famous Hausman

(1978)�s test can be used to check the presence of both the selection e¤ect and the essential heterogeneity.

We do not discuss model selection or model averaging either. Recall that model selection or model averaging

can be applied only if the data contain some but imprecise information on the true model. However, in the

framework of HV, the data do not contain any information on the untreated outcome of always-takers or

treated outcome of never-takers, so it is impossible to trade o¤ bias and variance of global treatment e¤ects

estimators. Nevertheless, there is some literature on covariates selection in treatment e¤ects evaluation under

unconfoundedness, see Kitagawa and Muris (2016) and references therein.

This paper is organized as follows. In Section 2, we state the assumptions which will be maintained

throughout the paper and also specify a running example which will be examined for each estimator. Sections

3-6 will conduct the pseudo-true analysis, the LSA and the partial identi�cation analysis for each of the four

estimators, respectively. Section 7 will use an empirical example from Angrist (1990) to illustrate the analyses

in Sections 3-6, and Section 8 concludes. To save space, we relegate some discussions to two supplementary

materials S.1 and S.2. S.1 contains the proofs that are not given in the main text, and S.2 contains points

that we do not want to expand in the main text.

2 Maintained Assumptions

We �rst state the nonlinear and nonseparable outcome model as in HV,

Y1 = �1(X;U1);

Y0 = �0(X;U0);
(1)

where Y1 and Y0 are the potential outcome for the treated and control group, respectively, X includes all

relevant covariates, and U1 and U0 are random errors. The participation decision

D = 1(�D(X;Z)� V � 0); (2)

where Z includes the instruments (usually some policy variables) for the choice process, V is a scalar

random error in the participation decision, and 1(�) is the indicator function which equals 1 if the event in
the parenthesis is true and 0 otherwise. Both X and Z appearing as the arguments of �D does not lose

generality since �D(X;Z) may not depend on all elements of X. By transforming �D(X;Z) and V by the

conditional cdf FV jX;Z , we can rewrite

D = 1(p(X;Z)� UD � 0); (3)

where UDjX;Z � U(0; 1), the uniform distribution on (0; 1), and p(X;Z) is the propensity score. As shown

in Vytlacil (2006), there is a larger class of latent index models that will have a representation of this form.

The equations in (1) imply that Z is excluded from the outcome equations; this is the usual exclusion

assumption. Equation (3) implies the monotonicity assumption of IA, i.e., when Z changes from z to z0,

the direction of D change is the same for all individuals. Actually, as shown in Vytlacil (2002), they are

equivalent in some sense; see Yu (2015b) for more discussions on the implication of (3). In the setup (1) and

(3), we de�ne the MTE as MTE(uD) � E [Y1 � Y0jUD = uD], uD 2 [0; 1].
For the ATE, we maintain the following assumptions.
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Assumption A:

(A-1) p(X;Z) is a nondegenerate random variable conditional on X.

(A-2) The random vectors (U1; UD) and (U0; UD) are independent of Z conditional on X. In Dawid (1979)�s

notation, (U1; UD) ? ZjX and (U0; UD) ? ZjX.
(A-3) The distribution of UD is absolutely continuous with respect to Lebesgue measure.

(A-4) E jYdj <1, d = 0; 1.
(A-5) 1 > P (D = 1jX) > 0.
(A-6) X1 = X0 almost everywhere, where Xd denotes a value of X if D is set to d.

These assumptions are repetition of those in HV and are prevalent in the literature of heterogeneous treatment

e¤ects. A necessary condition for (A-1) is that Z contains an extra random variable beyond X. (A-2) is the

ignorability assumption; it allows for both the selection e¤ect (U0 6? DjX) and the essential heterogeneity
((U1 � U0) 6? DjX). (A-3)-(A-6) are regularity assumptions, e.g., (A-6) is the "no feedback" condition which
excludes the e¤ect of D on X so conditioning on X does not mask the e¤ects of D. Assumptions (A-1)-(A-5),

combined with the setup (1) and (2), impose testable restrictions on the distribution of (Y;D;Z;X); see HV

(p. 678) for the index su¢ ciency restriction and the monotonicity restriction. As discussed in Yu (2015b),

the framework of HV above and that of IA are roughly equivalent. As emphasized in AIR (1996), the key

assumptions in IA�s framework are the ignorability assumption and the monotonicity assumption. Of course,

the exclusion assumption is also important in some applications. See Kitagawa (2015) and the references

therein for tests of joint validity of these three assumptions.

To facilitate our analysis, we impose the following assumption on the propensity score p(X;Z).

Assumption P: supp(p(X;Z)jX = x) =
h
p
x
; px

i
� [0; 1] for each x 2 supp(X), where supp(�) means the

support of a random variable. In other words, the conditional density function of p(X;Z) given X = x, say

fP (X;Z)jX(pjx), is positive for p 2
�
p
x
; px

�
.

This assumption tries to re�ect the reality of the support of p(X;Z). Usually, the support of p(X;Z)

is di¤erent for di¤erent x values and is a subset of [0; 1] staying in the middle of [0; 1]. We can relax

this assumption by allowing the support of p(X;Z) to be segments of intervals without di¢ culty, but we

�nd Assumption P will provide clean results without losing the essence of our problem so we maintain

it throughout the paper. Note also that we implicitly assume Z includes some continuous components;

otherwise, supp(p(X;Z)jX = x) cannot be an interval. We focus on this general case and treat the case with

only discrete instruments as a special case.

For the QTE, we do not require (A-4). Nevertheless, we replace (A-4) by some regularity conditions on

the distribution of Yd given UD = uD, d = 0; 1. We label the combined assumptions as

Assumption Q: (A-1), (A-2), (A-3), (A-5) and (A-6) plus

(Q-4) supp(YdjX = x; UD = uD) = Yxd, the conditional density fYdjX;UD (ydjx; uD) is continuous in (yd; uD)
for almost every x 2supp(X), yd 2 Yxd, d = 0; 1, and uD 2 [0; 1], where Yx0 =

h
y
x0
; yx0

i
and Yx1 =

h
y
x1
; yx1

i
are compact and need not be the same.

Assumption (Q-4) implies that the support of Y0 and Y1 may be di¤erent as typical in applications. Note

also that the support of Yd is compact, does not depend on UD (although may depend on X), and

fYdjX;UD (ydjx; uD) > 0 for yd 2
�
y
xd
; yxd

�
and uD 2 [0; 1]. This implies that supp(YdjX = x) = Yxd,

fYdjX(ydjx) is continuous in yd for yd 2 Yxd, and fYdjX(ydjx) > 0 for yd 2
�
y
xd
; yxd

�
. These regularities

can be relaxed in an obvious way without a¤ecting our general results, but to make the discussion clean and

avoid technical complications, we maintain assumption (Q-4) throughout the paper.
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We now specify a running example that will be used for illustration in all the four estimators. First, let

Y1 = 2U , Y0 = U and D = 1(Z � V � 0), where0B@ U

V

Z

1CA � N (0;�) with � =

0B@ 1 0:7 0

0:7 1 0

0 0 1

1CA :
We label this case as the selection-e¤ect-only case. For the endogeneity-free case, change the correlation

between U and V to 0. When there are both the selection e¤ect and essential heterogeneity, let Y1 =

V + 2U; Y0 = 2V +U , and all other speci�cations are the same as in the seletion-e¤ect-only case. Note that

p(Z) = E [DjZ] =
R Z
�1 �(v)dv = �(Z) � U [0; 1], where we use �(�) and �(�) to represent the cdf and the

probability density function (pdf) of a standard normal distribution.

We add more comments on the above example. The label "selection-e¤ect-only" is applied only to the

QTE scenario. As will be explained in Section 4.1, the essential heterogeneity in the QTE case is de�ned as

FU1jUD (ujuD) = FU0jUD (ujuD) for u 2 [0; 1] and uD 2 [0; 1], which is di¤erent from the de�nition in the ATE
case - E [U1jUD = uD] = E [U0jUD = uD] for uD 2 [0; 1]. As shown in S.2.5, these two de�nitions do not
imply each other. The running example satis�es FU1jUD (ujuD) = FU0jUD (ujuD) but not E [U1jUD = uD] =
E [U0jUD = uD]. Nevertheless, the examples in the ATE sections (i.e., Sections 3 and 5) do not involve
whether E[U1 � U0jUD = uD] = 0 but are only related to p(Z).
A word on notation: �rst, we depress the conditioning on X = x throughout the paper to simplify

notations. C (I) is the space of continuous functions on a compact set I. d is always used for indicating
the two treatment statuses, so is not written out explicitly as "d = 0; 1" throughout the paper. �d �
E [Yd] ;� = �1 � �0; Fd(yd) � P (Yd � yd) and �(�) = Q1 (�) � Q0 (�) � F�11 (�) � F�10 (�), where

F�1d (�) = inf fydjFd (yd) � �g. We use the superscript star to indicate pseudo-true values for the IVE and
IV-QRE and use the upper bar to indicate pseudo-true values for the LSE and QRE. For example, ��d is the

probability limit of the IVE for �d, and �(�) is the probability limit of the QRE for �(�).

3 The Instrumental Variable Estimator

In this section, we �rst derive the pseudo-true value of IVE when the propensity score is used as the

instrument5 and explain why the IVE is consistent when the essential heterogeneity is absent; we then

conduct the LSA and a parallel analysis when a general instrument is used, and conclude by summarizing

the partial identi�cation results in Heckman and Vytlacil (2001b). To start, recall that the moment conditions

used by the IVE are

E

" 
1

J(Z)

!
(Y � ��0 �D ���)

#
= 0;

where J(Z) is a scalar function of Z. Note also that for evaluating the ATE, we can use the additively

separable outcome model, Yd = �d + Ud, without loss of generality since we can rede�ne Ud as Yd � E [Yd].
In this setup, the selection e¤ect means E[U0jUD] 6= 0 and the essential heterogeneity means E [U1 � U0jUD]
6= 0.

5As to why use p(Z) as an instrument, note from Chamberlain (1987) that in the model Y = ��0+D���+U with E [U jZ] = 0,
the optimal instruments are E [(1; D)jZ] = (1; p(Z)).
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3.1 Pseudo-true Analysis

The following theorem states the pseudo-true values of IVE under misspeci�cation when the propensity score

is used as the instrument.

Theorem 1 Under Assumptions A and P, when J(Z) = p(Z),

��1 =

Z p

0

E [Y1jUD = uD] duD +
Z p

p

fE [Y1jUD = uD]h1(uD) + E [Y0jUD = uD] (1� h1(uD))g duD

+

Z 1

p

E [Y0jUD = uD] duD;

��0 =

Z 1

p

E [Y0jUD = uD] duD +
Z p

p

fE [Y1jUD = uD]h0(uD) + E [Y0jUD = uD] (1� h0(uD))g duD

+

Z p

0

E [Y1jUD = uD] duD;

and

�� = ��1 � ��0 =
Z p

p

MTE(uD)h(uD)duD =

Z 1

0

MTE(uD)h(uD)duD

where

h1(uD) =
1

V ar (p(Z))

Z 1

uD

�
E
�
p(Z)2

�
� pE [p(Z)] + (p� E [p(Z)])

�
dFp(Z)(p);

h0(uD) =
1

V ar (p(Z))

Z 1

uD

�
E
�
p(Z)2

�
� pE [p(Z)]

�
dFp(Z)(p):

and

h(uD) = h1(uD)� h0(uD) =
1

V ar (p(Z))

Z 1

uD

[p� E [p(Z)]] dFp(Z)(p):

Note that

�1 =

Z 1

0

E [Y1jUD = uD] duD =
Z p

0

E [Y1jUD = uD] duD+
Z p

p

E [Y1jUD = uD] duD+
Z 1

p

E [Y1jUD = uD] duD;

(4)

so in ��1, we use a weighted average of E [Y1jUD = uD] and E [Y0jUD = uD] to approximate E [Y1jUD = uD]
for uD 2 [p; p] and use E [Y0jUD = uD] to approximate E [Y1jUD = uD] for uD 2 [p; 1]. Similarly, in ��0, we
use a (di¤erent) weighted average of E [Y1jUD = uD] and E [Y0jUD = uD] to approximate E [Y0jUD = uD]
for uD 2 [p; p] and use E [Y1jUD = uD] to approximate E [Y0jUD = uD] for uD 2 [0; p]. The approximation
error depends on how close E [Y0jUD = uD] (E [Y1jUD = uD]) is to E [Y1jUD = uD] (E [Y1jUD = uD]) for
uD 2 [p; 1] (uD 2 [0; p]).
Since we can only identify E [Y1jUD = uD] and E [Y0jUD = uD] for uD 2 [p; p], e.g., by

E [Y1jUD = uD] =
dE [Y Djp(Z) = p]

dp

����
p=uD

; E [Y0jUD = uD] = �dE [Y (1�D)jp(Z) = p]
dp

����
p=uD

;
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the true values �1 and �0 are not identi�able.
6 However, sinceZ p

0

E [Y1jUD = uD] duD = pE
�
Y jD = 1; p(Z) = p

�
;

Z 1

p

E [Y0jUD = uD] duD = (1�p)E [Y jD = 0; p(Z) = p] ;

��1 and �
�
0 use the identi�able to replace the unidenti�able and thus are estimable,

7 where E
�
Y jD = 1; p(Z) = p

�
is the mean of Y1 for always takers and E [Y jD = 0; p(Z) = p] is the mean of Y0 for never-takers, and both

are estimable.

From the proof of Theorem 1,

��1 = E

�
p(Z)

V ar (p(Z))

��
E
�
p(Z)2 � E [p(Z)]

��
+ p(Z) (1� E [p(Z)])

	
E [Y jD = 1; p(Z)]

�
+E

�
1� p(Z)
V ar (p(Z))

��
E
�
p(Z)2 � E [p(Z)]

��
+ p(Z) (1� E [p(Z)])

	
E [Y jD = 0; p(Z)]

�
;

��0 = E

�
p(Z)

V ar (p(Z))

�
E
�
p(Z)2

�
� p(Z)E [p(Z)]

	
E [Y jD = 1; p(Z)]

�
+E

�
1� p(Z)
V ar (p(Z))

�
E
�
p(Z)2

�
� p(Z)E [p(Z)]

	
E [Y jD = 0; p(Z)]

�
:

In other words, ��1 is an expected weighted average of E [Y jD = 1; p(Z)] and E [Y jD = 0; p(Z)], while ��0 is a

di¤erent expected weighted average of these two conditional expectations, and the two conditional expecta-

tions and the weights are all estimable. Note that given a p(Z) value, the weights in ��d for E [Y jD = 1; p(Z)]

and E [Y jD = 0; p(Z)] are positive but their sum need not be 1; nevertheless, the expectation of this sum

is 1. In other words, ��d is a weighted average of E [Y jD = 1; p(Z) = p] and E [Y jD = 0; p(Z) = p] over all

possible p values.

As to hd and h, �rst note that they are only related to p(Z) but do not involve Yd. It is not hard to check

hd(uD) = 1 for uD 2 [0; p] and hd(uD) = 0 for uD 2 [p; 1], which implies h(uD) = 0 for uD 2 [0; p] [ [p; 1].
This also implies that the three terms of ��d in Theorem 1 can be combined:

��1 =
R 1
0
fE [Y1jUD = uD]h1(uD) + E [Y0jUD = uD] (1� h1(uD))g duD

��0 =
R 1
0
fE [Y1jUD = uD]h0(uD) + E [Y0jUD = uD] (1� h0(uD))g duD:

(5)

Note also that h(uD) is the same as hIVp(Z)(uD) in HV, so we reproduce the weighted average expression of

�� as in HV by analyzing ��1 and �
�
0 separately. The new thing here is the new weights h1 and h0, whose

properties are studied in the next proposition. For completeness, we also state the properties of h as studied

in HV.

Proposition 1 h1, h0 and h satisfy the following properties:

(i)
R p
p
h1(uD)duD = 1� p,

R 1
0
h1(uD)duD = 1;

(ii)
R p
p
h0(uD)duD = �p,

R 1
0
h0(uD)duD = 0;

(iii)
R p
p
h(uD)duD =

R 1
0
h(uD)duD = 1;

6This implies MTE(uD) = E [Y1jUD = uD] � E [Y0jUD = uD] =
dE[Y jp(Z)=p]

dp

���
p=uD

, uD 2 [p; p], as in Heckman and

Vytlacil (1999, 2001a).
7 In S.2.1, we provide alternative formulas for ��d to show that it is estimable.

8



(iv) when uD <
E[p(Z)]�E[p(Z)2]

1�E[p(Z)] , h1(uD) is strictly increasing, and when uD >
E[p(Z)]�E[p(Z)2]

1�E[p(Z)] , h1(uD) is

strictly decreasing;

(v) when uD <
E[p(Z)2]
E[p(Z)] , h0(uD) is strictly decreasing, and when uD >

E[p(Z)2]
Ep(Z) , h0(uD) is strictly increasing;

(vi) when uD < E [p(Z)], h (uD) is strictly increasing, and when uD > E [p(Z)], h(uD) is strictly decreasing.

From (iv), there is a point u�1D such that when uD 2 (p; u�1D), ��1 overweights E [Y1jUD = uD], and when
uD 2 (u�1D; p], ��1 underweights E [Y1jUD = uD]. Over uD 2 [p; p), E [Y0jUD = uD] is underweighted and
the weight can even be negative when uD 2 (p; u�1D). From (v), ��0 always underweights E [Y1jUD = uD] for
uD 2 (p; p]. Because h0(p) = 0 and h0 is strictly increasing at the left of p, there is a point u�0D such that

when uD 2 (u�0D; p), the weight is negative, so E [Y0jUD = uD] is overweighted over these uD�s. From (vi),

h is always positive on (p; p).

In summary, h1 is a proper weighting scheme on [0; 1] since h1(uD) � 0 and
R 1
0
h1(uD)duD = 1, but is

not a proper weighting scheme on [p; p] since
R p
p
h1(uD)duD = 1�p < 1; h0 is not a proper weighting scheme

on either [0; 1] or [p; p] since it can be negative and
R p
p
h0(uD)duD = �p < 1,

R 1
0
h0(uD)duD = 0 < 1; and h

is a proper weighting scheme on both [0; 1] and [p; p] since h(uD) � 0 and
R 1
0
h(uD)duD =

R p
p
h(uD)duD = 1.

Nevertheless, from (5), since
R 1
0
[h1(uD) + (1� h1(uD))] duD = 1 and

R 1
0
[h0(uD) + (1� h0(uD))] duD = 1,

both ��1 and �
�
0 are weighted averages of E [Y1jUD = uD] and E [Y0jUD = uD] over uD 2 [0; 1]. Note also

that the weights in ��1 on E [Y1jUD = uD] over uD 2 [0; p] satisfy
R p
0
h1(uD)duD = 1 and the weights

on E [Y0jUD = uD] over uD 2 [p; 1] satisfy
R 1
p
[1� h1(uD)] duD = 0. Similarly, the weights in ��0 on

E [Y0jUD = uD] over uD 2 [p; 1] satisfy
R 1
p
[1� h0(uD)] duD = 1 and the weights on E [Y1jUD = uD] over

uD 2 [0; p] satisfy
R p
0
h0(uD)duD = 0. This implies that in the unconfounded case, where E [YdjUD = uD] =

�d, �
�
d = �d; that is, in the unconfounded case, �d can be identi�ed with or without instruments.

The following example intuitively illustrates the shape of h1; h0 and h.

Example 1 Consider the setup of treatment status D in the running example. In this example, p(Z) �
U [0; 1], so p = 0 and p = 1.

h1(uD) = (1 + 3uD)(1� uD), h0(uD) = (1� 3uD)(1� uD) and h(uD) = 6uD(1� uD)

are shown in Figure 1. From Figure 1, h1(uD) is increasing on [0; 1=3] and decreasing on [1=3; 1], h0(uD)

is decreasing on [0; 2=3] and increasing on [2=3; 1], and h(uD) is increasing on [0; 1=2] and decreasing on

[1=2; 1]. ��1 overestimates E [Y1jUD = uD] for uD 2 (0; 2=3) and underestimates E [Y1jUD = uD] for uD 2
(2=3; 1], while ��0 overestimates E [Y0jUD = uD] for uD 2 (1=3; 1) and underestimates E [Y0jUD = uD] for
uD 2 [0; 1=3). The area between h1(uD) and the horizontal axis is 1, while the area between h0(uD) and the
horizontal axis is 0. Since h1 is always above h0 for uD 2 (0; 1), h(uD) is positive on uD 2 (0; 1) and the
area between it and the horizontal axis is 1.

Without unconfoundedness, the following proposition shows that it is still possible to have ��d = �d as

long as there is no essential heterogeneity,

Proposition 2 If E[U1 � U0jUD = uD] = 0 for all uD 2 [p; 1], ��1 = �1; if E[U1 � U0jUD = uD] = 0 for all
uD 2 [0; p], ��0 = �0. If E[U1 � U0jUD = uD] = 0 for all uD 2 [p; p], �� = �.

9



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

W
ei

gh
t

2/31/3

Figure 1: h1; h0 and h = h1 � h0

Proof. Since when E[U1�U0jUD = uD] = 0, �1 takes the form of (4) with E [Y1jUD = uD] = E [Y0jUD = uD]+
�,

��1 � �1 = �
"Z p

p

h1(uD)duD �
Z 1

p

duD

#
= �

�
(1� p)� (1� p)

�
= 0

from Proposition 1(i). Similarly,

��0 � �0 = �
"Z p

0

duD +

Z p

p

h0(uD)duD

#
= �

�
p� p

�
= 0

from Proposition 1(ii). Finally,

�� �� =
Z p

p

E[U1 � U0jUD = uD]h(uD)duD = 0:

Suppose �1 > �0 > 0. �
�
1 overestimates E [Y1jUD = uD] over uD 2 (p; u�1D) but underestimates E [Y1jUD = uD]

over uD 2 (u�1D; 1]. These two forces o¤set each other, leading to a consistent estimator. Similarly, ��0 overes-
timates E [Y0jUD = uD] over uD 2 [0; u�0D] but underestimates E [Y0jUD = uD] over uD 2 [u�0D; p] such that
a consistent estimator is achieved. Here, u�1D and u

�
0D are de�ned after Proposition 1. From the above proof,

we can see that if the pseudo-true values of an estimator can be expressed in the weighted average form as

in Theorem 1, then as long as the weights satisfy Proposition 1(i) and (ii) (especially,
R p
p
h1(uD)duD = 1� p

and
R p
p
h0(uD)duD = �p), the results of Proposition 2 can be applied.
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3.2 Local Sensitivity Analysis

Take E[U1 � U0jUD = uD] as a function in C[0; 1]. Assume E[U1 � U0jUD = uD] stays in a parametrized

space

G�� =
�
G� (�) : � 2M; 0 2M;G0(uD) = 0; uD 2 [0; 1], and

Z 1

0

G�(uD)duD = 0

�
;

then ��d and �
� depend on �, where

R 1
0
G�(uD)duD = 0 because we normalize E[U1] = E[U0] = 0. We can

now study the sensitivity of ��d and �
� to the local deviation of E[U1 � U0jUD = uD] from zero along the

path G��. Speci�cally, give a direction of deviation, say g(�), let lim�!0
G�(�)
� ! g(�); then our targets are

D�
d (g) � lim

�!0

��d(�)� �d
�

and D�
� (g) � lim

�!0

��(�)��
�

or path derivatives along the path G��, where we use ��d(�) and ��(�) to indicate the dependence of ��d and
�� on �, and note that ��d(0) = �d and �

�(0) = �. We impose the following conditions to guarantee the

limits in D�
d and D

�
� exist.

Assumption LA: supuD2[0;1];�2N
���G�(uD)

�

��� <1, where N is a neighborhood of 0.

Proposition 3 Under Assumptions A, P and LA,

D�
1 (g) = �

Z p

p

g(uD) (1� h1(uD)) duD �
Z 1

p

g(uD)duD =

Z 1

0

g(uD)h1(uD)duD;

D�
0 (g) =

Z p

0

g(uD)duD +

Z p

p

g(uD)h0(uD)duD =

Z 1

0

g(uD)h0(uD)duD;

and

D�
� (g) =

Z p

p

g(uD)h(uD)duD =

Z 1

0

g(uD)h(uD)duD = D
�
1 (g)�D�

0 (g) :

D�
1 (g) depends on g(uD) for uD 2 [p; 1], and D�

0 (g) depends on g(uD) for uD 2 [0; p]. This is because only
on these areas of uD, ��1 and �

�
0 have mis-estimated E[Y1jUD = uD] and E[Y0jUD = uD], respectively. Since

hd and h are estimable, D�
d (g) and D

�
� (g) are estimable.

The following example numerically illustrates D�
d (g) and D

�
� (g) for a speci�c g.

Example 2 Consider the setup in the running example. Suppose g(uD) = 1� 2uD; i.e., the individual with
higher propensity to participate has a larger idiosyncratic gain. Then

D�
1 (g) =

Z 1

0

(1� 2uD) (1 + 3uD)(1� uD)duD =
1

6
;

D�
0 (g) =

Z 1

0

(1� 2uD) (1� 3uD)(1� uD)duD =
1

6

and

D�
� (g) =

Z 1

0

6uD(1� uD) (1� 2uD) duD = 0:

In this simple case, although there is essential heterogeneity locally, � can be consistently estimated. This is

because both ��1 and �
�
0 overestimate their corresponding true value while the biases o¤set each other. This

example shows that the conditions in Proposition 2 are only su¢ cient but not necessary.
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The LSA above is closely related to semiparametric e¢ ciency bound calculation in the literature; see,

e.g., Newey (1990) and Bickel et al. (1998) for an introduction. For a real parameter �, we need to

check how it changes as the response to a local variation of the parametric submodel f� to calculate its

semiparametric e¢ ciency bound, where if we use � (�) to denote the dependency of � on �, then � (�0)

equals the true value. The LSA is di¤erent in two aspects. First, we do not need to parametrize the density

(or distribution) function, but parametrize any characteristic of the model, e.g., E[U1 � U0jUD = uD] in

this example. Second, the parameter of interest need not be real-valued, but can belong to any normed

space. Although for this example, ��d and �
� are indeed real-valued, in Section 4.3 below, the parameters of

interest belong to C ([0; 1]). It is also worth mentioning that if the parameter of interest is real-valued and its
path derivative is a continuous linear functional from a Hilbert space to R, then by the Riesz representation
theorem, its path derivative can be represented as an inner product. Conversely, if the path derivative of

the interested parameter can be represented as an inner product, then it is a continuous linear functional.

For example, D�
1 (g) =

R 1
0
s(uD)g(uD)duD is an inner product on L2([0; 1]), where s(uD) = �1(p � uD �

p) (1� h1(uD)) � 1(p � uD � 1), so it is a continuous linear functional. Sometimes we may restrict the

space in which g(�) stays to be a subspace of a Hilbert space, e.g., in this example, we have restricted
g(�) 2 C0 ([0; 1]), where C0 ([0; 1]) �

n
g(�) : g 2 C ([0; 1]) and

R 1
0
g(uD)duD = 0

o
.

In practice, it is quite often that there are a few possible directions of deviation and there is some

prior information on the distribution of these deviations. Rigorously, suppose g 2 G and there is a prior
distribution F(�) on G, where G can be parametrized or fully nonparametric.8 Then we can summarize such
prior information by

D�
d (G) �

Z
D�
d (g) dF (g) and D�

� (G) �
Z
D�
� (g) dF (g) :

This is somewhat like Bayesian model averaging. This technique can be applied to any LSA so will not be

repeated for other estimators.

3.3 Using General Instruments

When a general instrument J(Z) is used in the IVE, the pseudo-true values are stated in the following

proposition. To distinguish from the pseudo-true values when p(Z) is used as the instrument, we add the

subscript J to all objects.

Proposition 4 Under Assumptions A and P,

��J1 =

Z p

0

E [Y1jUD = uD] duD +
Z p

p

fE [Y1jUD = uD]hJ1(uD) + E [Y0jUD = uD] (1� hJ1(uD))g duD

+

Z 1

p

E [Y0jUD = uD] duD;

��J0 =

Z 1

p

E [Y0jUD = uD] duD +
Z p

p

fE [Y1jUD = uD]hJ0(uD) + E [Y0jUD = uD] (1� hJ0(uD))g duD

+

Z p

0

E [Y1jUD = uD] duD;

8Note that C0 ([0; 1]) is separable, so any g 2 G can be approximated arbitrarily well by countably many basis functions, e.g.,
classical orthogonal polynomials, Fourier series, neural nets, or wavelets. Since it is easy to evaluate D�

1 (�) ; D�
0 (�) and D�

� (�)
at these basis functions, D�

1 (g) ; D
�
0 (g) and D

�
� (g) for a general g 2 G can be easily approximated by linear combinations of

D�
1 (�) ; D�

0 (�) and D�
� (�) values at these basis functions.
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and

��J = �
�
J1 � ��J0 =

Z p

p

MTE(uD)hJ(uD)duD =

Z 1

0

MTE(uD)hJ(uD)duD

where

hJ1(uD)

=
1

Cov (J(Z); p(Z))

Z 1

uD

[E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)] + (E [J(Z)jp(Z) = p]� E [J(Z)])] dFp(Z)(p);

hJ0(uD)

=
1

Cov (J(Z); p(Z))

Z 1

uD

[E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]] dFp(Z)(p)

and

hJ(uD) = hJ1(uD)� hJ0(uD) =
1

Cov (J(Z); p(Z))

Z 1

uD

[E [J(Z)jp(Z) = p]� E [J(Z)]] dFp(Z)(p):

The structures of ��Jd and �
�
J are similar to those of �

�
d and �

�, and the only di¤erence lies in the weights,

so we concentrate on hJd and hJ in the following discussion. Similar to hd, hJd(uD) = 1 for uD 2 [0; p] and
hJd(uD) = 0 for uD 2 [p; 1], and hJ(uD) = 0 for uD 2 [0; p] [ [p; 1]. hJ(uD) is exactly hIV(uDjJ) in HV, so
we reproduce the weighted average expression of ��J by analyzing �

�
J1 and �

�
J0 separately.

We can still prove the �rst two properties in Proposition 1 for hJ1 and hJ0, so the results in Proposition

2 still hold for ��J1 and �
�
J0. However, the last three properties of Proposition 1 cannot be proved generally.

Nevertheless, if E [J(Z)jp(Z) = p] is a strictly increasing or decreasing function of p, we can still prove similar
properties for hJd and hJ . To avoid repetition, we summarize the properties of hJd and hJ in S.2.3. When

E [J(Z)jp(Z) = p] is not monotone in p, hJ(uD) need not be positive as emphasized in HV; see Figure 4 of
HV for the possibility that hJ (uD) is negative at some area of uD. From the alternative expression of hJ ,

hJ (uD) =
E [J(Z)� E [J(Z)] jp(Z) � uD]

Cov (J(Z); p(Z))
P (p(Z) � uD) =

Cov (J(Z); 1 (p(Z) � uD))
Cov (J(Z); 1 (p(Z) � UD))

;

we can see if E [J(Z)jp(Z) � p] is weakly monotone in p, then hJ (uD) is nonnegative for any uD. This
condition is weaker than the weak monotonicity of E [J(Z)jp(Z) = p].
We re-emphasize a point made by HV here. For di¤erent J(Z), ��Jd and �

�
J are di¤erent; in other

words, the estimands depend on the instruments employed (even if the set of Z is �xed) unless the essential

heterogeneity is excluded; see Heckman (2010) and footnote 6 of Carneiro et al. (2011) for an intuitive

explanation.

We next discuss the discrete instrument case. A discrete instrument can appear when Z is discrete and

p(Z) is used as the instrument or Z is continuous but the employed instrument J(Z) is discrete (e.g., J(Z)

is an indicator function for di¤erent ranges of p(Z)). We consider only the former case since the latter can

be similarly discussed. As in Section 4.3 of HV, suppose p(Z) can take only K values, fp1; � � � ; pKg, with
0 < p1 < p2 < � � � < pK < 1. In this case, h1(uD) = h1(pk+1) for uD 2 (pk; pk+1], k = 1; � � � ;K � 1, and
similarly for h0(uD) and h(uD). As a result,

��1 =

KX
k=0

Z pk+1

pk

fE [Y1jUD = uD]h1(pk+1) + E [Y0jUD = uD] (1� h1(pk+1))g duD

13



=
KX
k=0

(pk+1 � pk)
�
h1(pk+1)�

k
1 + (1� h1(pk+1))�k0

�
=

KX
k=0

(pk+1 � pk)
�
E [Y0jUD = euDk] + Z pk+1

pk

MTE(uD)
h1(pk+1)

pk+1 � pk
duD

�
;

where

�kd =
1

pk+1 � pk

Z pk+1

pk

E [YdjUD = uD] duD =
E [Y � 1 (D = d) jp(Z) = pk+1]� E [Y � 1 (D = d) jp(Z) = pk]

P (D = djp(Z) = pk+1)� P (D = djp(Z) = pk)
;

k = 0; 1; � � � ;K, are identi�able,9 �0d is the mean of Yd for always-takers A � fUD � p1g, �Kd is the mean

of Yd for never-takers N � fUD > pKg, �kd, k = 1; � � � ;K � 1, is the mean of Yd for compliers Ck �
fpk < UD � pk+1g who are induced to switch from D = 0 to D = 1 as p(Z) changes from pk to pk+1, euDk
is de�ned by E [Y0jUD = euDk] = �k0 , p0 � 0, pK+1 � 1, h1(p1) = 1, h1(pK+1) = 0, and
h1(pk+1) =

Cov (p(Z); p(Z)1 (p(Z) � pk+1))� Cov
�
p(Z)2; 1 (p(Z) � pk+1)

�
+ Cov (p(Z); 1 (p(Z) � pk+1))

V ar (p(Z))
;

k = 1; � � � ;K � 1, are identi�able. Similarly,

��0 =

KX
k=0

Z pk+1

pk

fE [Y1jUD = uD]h0(pk+1) + E [Y0jUD = uD] (1� h0(pk+1))g duD

=
KX
k=0

(pk+1 � pk)
�
h0(pk+1)�

k
1 + (1� h0(pk+1))�k0

�
=

KX
k=0

(pk+1 � pk)
�
E [Y0jUD = euDk] + Z pk+1

pk

MTE(uD)
h0(pk)

pk+1 � pk
duD

�
;

where the euDk�s are the same as in ��1, h0(p1) = 1, h0(pK+1) = 0, and
h0(pk+1) =

Cov (p(Z); p(Z)1 (p(Z) � pk+1))� Cov
�
p(Z)2; 1 (p(Z) � pk+1)

�
V ar (p(Z))

; k = 1; � � � ;K � 1;

are identi�able. Therefore,

�� =
K�1X
k=1

(pk+1 � pk)h(pk+1)
Z pk+1

pk

MTE(uD)
1

pk+1 � pk
duD =

K�1X
k=1

(pk+1 � pk)h(pk+1)LATE (pk; pk+1)

as shown in HV, where

LATE (pk; pk+1) �
1

pk+1 � pk

Z pk+1

pk

MTE(uD)duD = �
k
1 � �k0 =

E [Y jp(Z) = pk+1]� E [Y jp(Z) = pk]
pk+1 � pk

is the average treatment e¤ect for compliers Ck,

h(pk+1) = h1(pk+1)� h0(pk+1) =
Cov (p(Z); 1 (p(Z) � pk+1))

V ar (p(Z))
; k = 1; � � � ;K � 1; (6)

9 In �0d and �
K
d , E [Y � 1 (D = 1) jp(Z) = 0] = E [Y � 1 (D = 0) jp(Z) = 1] = P (D = 1jp(Z) = 0) = P (D = 0jp(Z) = 1) = 0.
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and the summation is from k = 1 to k = K � 1 because h1(p1) = h0(p1) = 1 and h1(pK+1) = h0(pK+1) = 0.
Finally, we explain why

PK�1
k=1 (pk+1 � pk)h(pk+1) = 1. Note that p(Z) =

PK
k=0 (pk+1 � pk) 1(p(Z) �

pk+1) = p1 +
PK�1

k=1 (pk+1 � pk) 1(p(Z) � pk+1) + (1� pK), so

V ar (p(Z)) =
K�1X
k=1

(pk+1 � pk)Cov (p(Z); 1 (p(Z) � pk+1)) ;

which implies
PK�1

k=1 (pk+1 � pk)h(pk+1) = 1.
A special case is K = 2 as discussed in IA, where Z can take only two values. In this case,

h1(p2) =
1� p1
p2 � p1

; h0(p2) = �
p1

p2 � p1
and h(p2) =

1

p2 � p1
;

so

��1 = p1�1jA + (p2 � p1)
�
1� p1
p2 � p1

�1jC �
1� p2
p2 � p1

�0jC

�
+ (1� p2)�0jN

= p1�1jA + (1� p1)�1jC + (1� p2)
�
�0jN � �0jC

�
;

��0 = (1� p2)�0jN + (p2 � p1)
�

p2
p2 � p1

�0jC �
p1

p2 � p1
�1jC

�
+ p1�1jA

= (1� p2)�0jN + p2�0jC + p1
�
�1jA � �1jC

�
;

�� = �1jC � �0jC � LATE;

where �� is exactly the LATE in IA, p1; p2 � p1 and 1� p2 are the probabilities of always-takers, compliers
and never-takers, and �1jA, �1jC , �0jC and �0jN are the means for always-takers A � fUD � p1g, compliers
C � fp1 < UD � p2g and never-takers N � fUD > p2g in the two counterfactual statuses. Obviously,

��d is a weighted average of these four means, but �
�
1 overweights �1jC and negatively weights �0jC while

��0 overweights �0jC and negatively weights �1jC .
10 Overall, if �1jC � �0jC = �1jN � �0jN , then ��1 =

p1�1jA + (1� p1)�1jC + (1� p2)
�
�1jN � �1jC

�
= p1�1jA + (p2 � p1)�1jC + (1� p2)�1jN = �1. Similarly, if

�1jC � �0jC = �1jA � �0jA, then ��0 = �0. Finally, if �1jC � �0jC = �1jN � �0jN = �1jA � �0jA, which is the
conditonal constant e¤ects assumption (Restriction 2) of Angrist (2004) or the conditional e¤ect ignorability

assumption (Assumption 3) of Angrsit and Fernández-Val (2013), then �� = �.

Finally, when a general instrument J(Z) is used, D�
d (g) and D

�
� (g) in Section 3.2 take similar forms

except replacing hd(uD) and h(uD) by hJd(uD) and hJ(uD), so similar analysis as above can be applied.

For example, when p(Z) is discrete,

D�
1 (g) = �

K�1X
k=1

(pk+1 � pk) (1� h1(pk+1)) gk � (1� pK)gK = p1g0 +
K�1X
k=1

(pk+1 � pk)h1(pk+1)gk;

D�
0 (g) = p1g0 +

K�1X
k=1

(pk+1 � pk)h0(pk+1)gk;

and

D�
� (g) = D

�
1 (g)�D�

0 (g) =
K�1X
k=1

(pk+1 � pk)h(pk+1)gk;

10 It can be shown that the expression of ��0 is equivalent to that in Proposition 5.3 of Abadie (2003).
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where

gk =
1

pk+1 � pk

Z pk+1

pk

g(uD)duD; k = 0; 1; � � � ;K: (7)

Of course, we can specify gk directly, k = 0; 1; � � � ;K, rather than specify g(�) in practice.
We can also integrate the information in D�

d (g) and D
�
� (g) by considering D

�
d (G) at the end of Section

3.2. However, due to the arbitrariness of F(�) in D�
d (G), we can alternatively consider supg(�)2C10 D

�
d (g) and

supg(�)2C10 D
�
� (g), where C10 ([0; 1]) �

n
g(�) 2 C0 ([0; 1]) :

R 1
0
g2(uD)duD = 1

o
is the normalized subspace of

C0. To simplify notations, denote supD�
d � supg(�)2C10 D

�
d (g) and supD

�
� � supg(�)2C10 D

�
� (g). Notice that

by the Cauchy-Schwarz inequality, sup D�
0 =

qR 1
0
h20(uD)duD, but supD

�
1 and supD

�
� seem hard to derive

because di¤erent from h0(�) which satis�es
R 1
0
h0(uD)duD = 0,

R 1
0
h1(uD)duD =

R 1
0
h(uD)duD = 1. To �nd

supD�
1 and supD

�
�, we can resort to numerical optimization algorithms such as the fmincon function of

matlab. Even if p(Z) is continuous, we can still employ such algorithms because p(Z) in �nite samples is

discrete; in other words, K = n, where n is the sample size. Take supD�
� as an example. We are solving

the following optimization problem:

max
g0;g1;��� ;gK

K�1X
k=1

(pk+1 � pk)h(pk+1)gk

subject to
KX
k=0

(pk+1 � pk) gk = 0 and
KX
k=0

(pk+1 � pk) g2k = 1;

where
PK

k=0 (pk+1 � pk) g2k = 1 is just a normalization.11 Since the objective function is linear (so continuous)
in (g0; g1; � � � ; gK), and the constraint set is compact, the maximum always exists by the Weierstrass theorem.
The resulting supD�

� is the sensitivity of �� to the local deviation of E[U1 � U0jUD = uD] in the most

sensitive direction.

3.4 Partial Identi�cation Analysis

We summarize the sharp bounds for �d and � developed in Heckman and Vytlacil (2001b) in this subsection.

To avoid trivial bounds for �d and �, we maintain the bounds of Yd as in assumption (Q-4). Speci�cally,

we impose a weaker version of assumption (Q-4):

Assumption (Q-40): P (Yd 2 YxdjX = x) = 1 for almost every x 2supp(X).

Note that assumption (A-2) implies that supp(YdjX = x) does not depend on Z, so conditioning on Z in

(Q-40) is not necessary. As usual, we depress the conditioning on X = x to simplify notations. It turns out

that

I1 � pE [Y jp (Z) = p;D = 1] + (1� p)y
1
� �1 � pE [Y jp (Z) = p;D = 1] + (1� p)y1 � I1;

I0 �
�
1� p

�
E
�
Y jp (Z) = p;D = 0

�
+ py

0
� �0 �

�
1� p

�
E
�
Y jp (Z) = p;D = 0

�
+ py0 � I0;

I� � I1 � I0 � � � I1 � I0 � I�;

where p and p are de�ned in Assumption P. Note that
�
I�; I�

�
does not necessarily cover 0. Since the width

11Since the objective function is linear in gk, if g� �
�
g�0 ; � � � ; g�K

�
maximizes the objective function under the restrictionPK

k=0 (pk+1 � pk) g2k = 1, then
p
ag� maximizes the objective function under the restriction

PK
k=0 (pk+1 � pk) g2k = a. Also,

if we replace the objective function by its absolute value, then the maximum does not change because the minimum of the
original objective function must be the negative of its maximum.
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of the bounds for � is I1 � I1 + I0 � I0 = (1 � p)
�
y1 � y1

�
+ p

�
y0 � y0

�
, p = 0 and p = 1 are necessary

and su¢ cient for point identi�cation of � under Assumption A and (Q-40). To evaluate the bounds for

�1, we need p, y1, y1 and E [Y jp (Z) = p;D = 1]; to evaluate the bounds for �0, we need p, y0, y0 and

E
�
Y jp (Z) = p;D = 0

�
; to evaluate the bounds for �, we need all of them. Anyway, we need only evaluate

two conditional means to construct these bounds.

4 The Instrumental Variable Quantile Regression Estimator

The structure of this section is the same as that of Section 3 except that we explain at the beginning why the

IV-QRE, as an estimator of QTE, implicitly excludes the essential heterogeneity to guarantee its consistency.

4.1 Understanding the IV-QRE

CH express

Yd = q(d;X;Ud) with UdjX � U(0; 1)

by the Skorohod representation, where q(d; x; �) is the quantile function of Yd conditional on X = x. This

representation is a special case of the setup (1) and is essential in developing their identi�cation results. CH

impose the following assumptions on the model:

A1. Potential Outcomes: Conditional on X = x, for each d, Yd = q(d; x; Ud), where q(d; x; �) is strictly

increasing in � and Ud � U(0; 1).12

A2. Independence: Conditional on X = x, fUdg are independent of Z.
A3. Selection: D � �(Z;X; V ) for some unknown function � and random vector V .

A4. Rank Invariance (RI) or Rank Similarity (RS): Conditional on X = x, Z = z, (a) fUdg are equal to
each other; or, more generally, (b) fUdg are identically distributed, conditional on V .
A5. Observed Variables: Observed variables consist of Y � q(D;X;UD), D, X, and Z.13

The frameworks of CH and HV do not include each other. Roughly speaking, HV�s setup is more general

in the outcome equations while CH�s setup is more general in the selection equation. For example, by the

Skorohod representation, HV�s framework represents Yd as

Yd = q(d;X; V; Ud) with Udj (X;V ) � U(0; 1);

in other words, there are two random errors in each counterfactual outcome, while Yd in CH�s framework

has only one random error; see Yu (2014) for more discussions on these two representations of Yd. Under

rank invariance, Y = q(D;X;U) in CH�s framework while Y = q(D;X; V; U) in HV�s framework, where

U = U1 = U0. On the other hand, Assumption A3 does not impose any restriction on D, e.g., there is no

restriction on the dimension of V , while HV assume D takes the additive latent index form (2) with only

one random error. Under the general setup of outcome equations, the monotonicity assumption, which is

implied by the indexed choice model, is hard to relax; see Section 6 of HV for more discussions. Given

the indexed structure of D, it is without loss of generality to assume Z ? V jX as discussed in Section

2. Because we maintain the framework of HV, we strengthen the assumption on D to (3) but maintain

the restrictive assumption on Yd by CH. The relaxing on D and strengthening on Yd by CH allow for a

weaker assumption on the relationship between Z and the error terms. For example, HV require joint

12Note that Ud here should be understood as the conditional rank given X = x.
13Note that their UD = DU1 + (1�D)U0 is di¤erent from our UD .
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independence (U1; U0; UD) ? ZjX, while CH require only (U1; U0) ? ZjX and Z can even be dependent of

V . As emphasized in Yu (2015b), the joint independence between Z and (Ud; UD) (in contrast to Ud ? ZjX
and UD ? ZjX) is very important for all developments in HV. Finally, note that in HV�s framework, V in

A3 is equal to UD and (Ud; UD) ? ZjX implies FUdjX;Z;UD (ujx; z; uD) = FUdjX;UD (ujx; uD),14 so the rank
similarity assumption can be restated as

Assumption RS: FU1jUD (ujuD) = FU0jUD (ujuD) for u 2 [0; 1] and uD 2 [0; 1], where the conditioning on
X = x is depressed.

From this assumption, we denote FU1jUD (ujuD) = FU0jUD (ujuD) as FU jUD (ujuD). See Yu (2015a) for testing
rank invariance and Dong and Shen (2015) and Yu (2016b) for testing rank similarity in various contexts of

treatment e¤ects evaluation.

We now explain why Assumption RS essentially excludes the essential heterogeneity in the context of

QTE. Intuitively, E[U1�U0jUD] = 0 reduces two random errors to one in the context of ATE, FU1jUD (ujuD) =
FU0jUD (ujuD) is doing the same thing in the context of QTE. FU1jUD (ujuD) = FU0jUD (ujuD) implies that the
�th conditional quantiles of U1 and U0 given UD = uD are the same, which seems a natural counterpart of

E[U1jUD] = E[U0jUD]. In the unconfounded case, FU1jUD (� juD) = � = FU0jUD (� juD). Under Assumption
RS, FU1jUD (� juD) need not be � but equals FU0jUD (� juD). This is just like the assumption E[U1�U0jUD] = 0:
although E[U1jUD = uD] need not be zero, E[U1jUD = uD] = E[U0jUD = uD]. On the other hand,

Assumption RS does not imply E[U1�U0jUD] = 0. To see why, recall that the de�nitions of U1 and U0 in the
ATE case are di¤erent from those in the QTE case. The Ud in the former case equals qd(Ud)�

R 1
0
qd(u)du in the

latter case, where qd(u) = q(d; u) and the conditioning on X = x is depressed. So E[U1�U0jUD = uD] in the
former case equals

R
[q1(u)� q0(u)] dFU jUD (ujuD)�

R
[q1(u)� q0(u)] du in the latter case under Assumption

RS, and need not be zero.15

Assumptions A1-A5 imply

P (Y � q(D)jZ) = � ; (8)

where q(d) = q(d; �). Under a key full rank condition, CH show that there is a unqiue q = (q(0); q(1))

satisfying (8) when Z is binary.16 Before examining this full rank condition, we �rst check the set L of
(y0; y1) de�ned in their (2.12). First, for (y0; y1) 2 L, z = 0; 1,

P (Y < (1�D)y0 +Dy1jZ = z)
= P (Y < (1�D)y0 +Dy1jZ = z;D = 0)P (D = 0jZ = z)
+ P (Y < (1�D)y0 +Dy1jZ = z;D = 1)P (D = 1jZ = z)
= P (Y0 < y0jZ = z;D = 0) (1� p(z)) + P (Y1 < y1jZ = z;D = 1) p(z)

=
R 1
p(z)

FY0jUD (y0juD)duD +
R p(z)
0

FY1jUD (y1juD)duD 2 [� � �; � + �]

(9)

for some � > 0, where the second to last equality indicates that P (Y � q(D)jZ) is the distribution of a
mixed population from observable treated and untreated invidivuals given Z = z. Second, for z 2 f0; 1g
with P (D = djZ = z) > 0 and (y0; y1) 2 L,

fY jZ;D(ydjz; d) � f (10)

14 Intuitively, if Z ? (U1; U0), but Z 6? UD , then Z can a¤ect Ud indirectly through its correlation with UD (which must be
correlated with Ud under endogeneity).
15As to the de�nition of selection e¤ect, in the ATE case, it is E [U0jUD = uD] 6= 0 for uD 2 [0; 1], and in the QTE case, it

is FU0jUD (u0juD) 6= u0 for u0 2 [0; 1] and uD 2 [0; 1]. Obviously, E [U0jUD = uD] =
R
q0(u)dFU0jUD (ujuD) �

R
q0(u)du = 0

if FU0jUD (u0juD) = u0, so the selection e¤ect in the ATE case is stronger than the counterpart in the QTE case.
16When Z is not binary, we just pick two values that Z can take to identify (q(0); q(1)). More general identi�cation assumptions

are further discussed in Chernozhukov and Hansen (2013).
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for some f > 0. Since FY jZ;D(y1jz; 1) = 1
p(z)

R p(z)
0

FY1jUD (y1juD)duD and FY jZ;D(y0jz; 0) = 1
1�p(z)

R 1
p(z)

FY0jUD (y0juD)duD,

fY jZ;D(y1jz; 1) =
1

p(z)

Z p(z)

0

fY1jUD (y1juD)duD, fY jZ;D(y0jz; 0) =
1

1� p(z)

Z 1

p(z)

fY0jUD (y0juD)duD;

where p(z) = P (D = 1jZ = z) > 0 and 1 � p(z) = P (D = 0jZ = z) > 0 are assumed. As a result, (10) is
implied by our assumption (Q-4) for any yd 2

�
y
d
; yd

�
. It seems that the main restriction on L is (9); (10)

is only a regularity condition. The full rank condition is to assume that

�0(y0; y1) =

 
fY;DjZ(y0; 0j0) fY;DjZ(y1; 1j0)
fY;DjZ(y0; 0j1) fY;DjZ(y1; 1j1)

!
=

 R 1
p(0)

fY0jUD (y0juD)duD
R p(0)
0

fY1jUD (y1juD)duDR 1
p(1)

fY0jUD (y0juD)duD
R p(1)
0

fY1jUD (y1juD)duD

!
(11)

is full rank for any (y0; y1) 2 L, where �0(y0; y1) is the Jacobian of the moment equations (8) with respect to
(y0; y1). It is not hard to see that assumption (Q-4) implies that �0(y0; y1) is continuous for (y0; y1) 2 L, so
the regularity condition in CH�s Theorem 2 is satis�ed. Note that the full rankness of �0(y0; y1) is equivalent

to a monotone likelihood ratio condition

fY;DjZ(y1; 1j1)
fY;DjZ(y0; 0j1)

>
fY;DjZ(y1; 1j0)
fY;DjZ(y0; 0j0)

: (12)

The following proposition shows that this condition is equivalent to the positivity of the probability of

compliers, p(1)� p(0), after regularizing p(1) � p(0). Such a condition seems easier to check than (12) since
we do not need to check the joint conditional density of Y and D.

Proposition 5 If Assumption (Q-4) holds and p(1) � p(0), (12) holds if and only if p(1) > p(0).

Proof. From (11), (12) is equivalent toZ p(1)

0

fY1jUD (y1juD)duDZ 1

p(1)

fY0jUD (y0juD)duD
>

Z p(0)

0

fY1jUD (y1juD)duDZ 1

p(0)

fY0jUD (y0juD)duD
: (13)

Necessity: If p(1) = p(0), then the left hand side (LHS) is equal to the right hand side (RHS). Su¢ ciency:

When p(1) > p(0), Assumption (Q-4) implies that
Z p(1)

p(0)

fY1jUD (y1juD)duD > 0 and
Z p(1)

p(0)

fY0jUD (y0juD)duD >

0 for (y0; y1) 2 L, which implies that the numerator of the LHS is larger and the denominator is smaller
than the counterparts of the RHS. So (12) is equivalent to p(1) > p(0), i.e., Z has a nontrivial impact on D

(rather than (Y;D) as in (12)).

We close this subsection by a simple example to illustrate the bias of the QRE when the selection e¤ect

exists and the bias of the IV-QRE when the essential heterogeneity exists.

Example 3 Consider the setup in the running example. The left panel of Figure 2 shows that although the
IV-QRE is consistent to estimate the QTE, the QRE is inconsistent when the selection e¤ect exists. The

right panel shows that when there is also the essential heterogeneity, the IV-QRE is not consistent to estimate

the QTE either although compared with the QRE, it corrects part of the endogeneity bias. In summary, the

QRE is inconsistent as long as D is endogenous, and the IV-QRE is consistent only when the endogeneity

comes solely from the selection e¤ect.
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Figure 2: Asymptotic Biases of the QRE and IV-QRE When There is Only Selection E¤ect and When There
is ALSO the Essential Heterogeneity

4.2 Pseudo-true Analysis

First, similar to the IVE, suppose the moment conditions used by the IV-QRE are

E

" 
1

J(Z)

!
(� � 1 (Y � Q�0(�) +D ���(�)))

#
= 0;

where J(Z) is a general scalar instrument, and note that we use Qd(�) instead of q(d; �) as in CH to denote
the true quantile functions.

Theorem 2 Under Assumptions P and Q, when J(Z) = p(Z),

F �1 (y1) =

Z p

0

FY1jUD (y1juD)duD +
Z p

p

h
FY1jUD (y1juD)(1� Fp(Z)(uD)) + FY0jUD ( eF�10 eF1 (y1) juD)Fp(Z)(uD)i duD

+

Z 1

p

FY0jUD (
eF�10 eF1 (y1) juD)duD;

and

F �0 (y0) =

Z 1

p

FY0jUD (y0juD)duD +
Z p

p

h
FY1jUD (

eF�11 eF0 (y0) juD)(1� Fp(Z)(uD)) + FY0jUD (y0juD)Fp(Z)(uD)i duD
+

Z p

0

FY1jUD (
eF�11 eF0 (y0) juD)duD;

where eF1 (y1) = Z p

p

FY1jUD (y1juD)h (uD) duD and eF0 (y0) = Z p

p

FY0jUD (y0juD)h (uD) duD;
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and h (uD) is de�ned in Theorem 1.

As in the ��d case, the three terms of F
�
d (yd) can be combined since Fp(Z)(uD) = 0 for uD 2 [0; p] and

Fp(Z)(uD) = 1 for uD 2 [p; 1]. The weight h (uD) in eFd is exactly the weight in the IVE case. Note that
since h (uD) is nonnegative with

R
h (uD) duD = 1 and h (0) = h (1) = 0, both eF1 (�) and eF0 (�) are proper

cdfs such that eF�1d (�) in F �d (yd) is well de�ned. They are counterfactual cdfs for a mixed population with
the weight h(uD) on the subpopulation UD = uD.

Since

Fd(yd) =

Z
FYdjUD (ydjuD)duD =

Z p

0

FYdjUD (ydjuD)duD +
Z p

p

FYdjUD (ydjuD)duD +
Z 1

p

FYdjUD (ydjuD)duD;

and we can only identify FY1jUD (y1juD) and FY0jUD (y0juD) for uD 2
�
p; p
�
by (see, e.g., Yu (2014))

FY1jUD (y1juD) =
dE [1 (Y � yd)Djp(Z) = p]

dp

����
p=uD

; FY0jUD (y0juD) = �dE [1 (Y � yd) (1�D)jp(Z) = p]
dp

����
p=uD

;

the true cdfs F1(y1) and F0(y0) are not identi�able. As an alternative identi�cation scheme, the IV-

QRE uses the weighted average of FY1jUD (y1juD) and FY0jUD ( eF�10 eF1 (y1) juD) (FY1jUD ( eF�11 eF0 (y0) juD) and
FY0jUD (y0juD)) to approximate FY1jUD (y1juD) (FY0jUD (y0juD)) for uD 2

�
p; p
�
and uses FY0jUD ( eF�10 eF1 (y1) juD)

(FY1jUD ( eF�11 eF0 (y0) juD)) to approximate FY1jUD (y1juD) (FY0jUD (y0juD)) for uD 2 [p; 1] (uD 2 �0; p�). This
is somewhat similar to the identi�cation scheme of ��d. Note thatZ p

0

FY1jUD (y1juD)duD = pFY jD=1;p(Z)=p(y1);
Z 1

p

FY0jUD (y0juD)duD = (1� p)FY jD=0;p(Z)=p(y0);

and eFd (yd) are all identi�able from the data, where FY jD=1;p(Z)=p(y1) is the cdf of Y1 for always tak-

ers and FY jD=0;p(Z)=p(y0) is the cdf of Y0 for never-takers, and both are identi�able, so the IV-QRE

uses the identi�able to approximate the unidenti�able.17 The approximation error depends on how close

FY0jUD (
eF�10 eF1 (y1) juD) (FY1jUD ( eF�11 eF0 (y0) juD)) is to FY1jUD (y1juD) (FY0jUD (y0juD)) for uD 2 [p; 1] (uD 2

[0; p]). In the unconfounded case, FYdjUD (ydjuD) = Fd(yd), so eFd (yd) = Fd (yd) and thus
FY0jUD (

eF�10 eF1 (y1) juD) = F0( eF�10 eF1 (y1)) = F0(F�10 F1 (y1)) = F1 (y1) = FY1jUD (y1juD);
FY1jUD (

eF�11 eF0 (y0) juD) = F1( eF�11 eF0 (y0)) = F1(F�11 F0 (y0)) = F0 (y0) = FY0jUD (y0juD);

for any uD 2 [0; 1] and the IV-QRE of Qd(�) is consistent.18

From the proof of Theorem 2,

F �1 (y) = E
h
p(Z) � FY jD=1;p(Z) (y) + (1� p(Z)) � FY jD=0;p(Z)

� eF�10 eF1 (y)�i ;
F �0 (y) = E

h
p(Z) � FY jD=1;p(Z)

� eF�11 eF0 (y)�+ (1� p(Z)) � FY jD=0;p(Z) (y)i :
In other words, F �1 (�) is an expected weighted average of FY jD=1;p(Z) (�) and FY jD=0;p(Z)

� eF�10 eF1 (�)�, while
F �0 (�) is an expected weighted average of FY jD=1;p(Z)

� eF�11 eF0 (�)� and FY jD=0;p(Z) � eF�10 eF1 (�)�, and all these
components and the weights are estimable.

17 In S.2.2, we provide alternative formulas for F �d (yd) to show that it is estimable.
18For point identi�cation of (Q1(�); Q0(�)) in the unconfounded case, note that since fY1jUD (y1juD) and fY0jUD (y0juD) do

not depend on uD , (13) reduces to p(1)=(1� p(1)) > p(0)=(1� p(0)), which is equivalent to p(1) > p(0) as in Proposition 5.
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In the unconfounded case, FYdjUD (ydjuD) = Fd(yd), and thus the IV-QRE of Qd(�) is consistent. The
amazing result of CH is that in the absence of unconfoundedness, when the ranks of Y1 and Y0 for individuals

with UD = uD are preserved, they can still prove F �d (�) = Fd(�). One may suspect that this is because

0 6=
Z p

p

h
FY0jUD (

eF�10 eF1 (y1) juD)� FY1jUD (y1juD)iFp(Z)(uD)duD
=

Z 1

p

h
FY1jUD (y1juD)� FY0jUD ( eF�10 eF1 (y1) juD)i duD 6= 0;

and

0 6=
Z p

p

h
FY1jUD (

eF�11 eF0 (y0) juD)� FY0jUD (y0juD)i (1� Fp(Z)(uD))duD
=

Z p

0

h
FY0jUD (y0juD)� FY0jUD ( eF�10 eF1 (y0) juD)i duD 6= 0

as in the IVE case, i.e., the biases in estimating FY1jUD (y1juD) (FY0jUD (y0juD)) over uD 2 [p; p] and over
uD 2 [p; 1] ([0; p]) o¤set each other. The following proposition shows that this is not the case.

Proposition 6 Under Assumption RS, FY0jUD ( eF�10 eF1 (y1) juD) = FY1jUD (y1juD), and FY1jUD ( eF�11 eF0 (y0) juD) =
FY0jUD (y0juD) for any uD 2 [0; 1] although FYdjUD (ydjuD) need not equal FYd(yd) as in the unconfounded
case.

Proof. We only prove the �rst statement since the second statement can be similarly proved. Recall that
under Assumption RS, the common conditional cdf of U1 and U0 given UD = uD is denoted as FU jUD (�juD).
The key implication of Assumption RS is eF1 (�) = FhU (F1 (�)) and eF0 (�) = FhU (F0 (�)), where the same mixture
cdf FhU �

R
FU jUD (�juD)h (uD) duD appears in both eF1 and eF0. To see why, �rst note that

FY1jUD (y1juD) = P (Y1 � y1jUD = uD) = P (U1 � F1 (y1) jUD = uD) = FU1jUD (F1 (y1) juD);

where the second equality is from Assumption A1, so

eF1 (y1) = Z FY1jUD (y1juD)h (uD) duD =
Z
FU jUD (F1 (y1) juD)h (uD) duD = FhU (F1 (y1));

and similarly, eF0 (y0) = FhU (F0 (y0)). Since F
h
U (�) need not be an identity function, eFd (�) need not equal

Fd (�) as in the unconfounded case.
Now, eF�10 eF1 (y1) = F�10 �

FhU
��1

FhU (F1 (y1)) = F
�1
0 (F1 (y1)):

On the other hand, since FYdjUD (ydjuD) = FU jUD (Fd (yd) juD);

F�1Y0jUD

�
FY1jUD (y1juD)juD

�
= F�10

�
FU jUD=uD

��1
FU jUD=uD (F1 (y1)) = F

�1
0 (F1 (y1)):

So eF�10 eF1 (y1) = F�1Y0jUD �FY1jUD (y1juD)juD�, which is equivalent to FY0jUD ( eF�10 eF1 (y1) juD) = FY1jUD (y1juD).
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A straightforward corollary of Proposition 6 is that under Assumption RS, Fd (yd) can be alternatively

estimated by

F ��1 (y1) =

Z p

0

FY1jUD (y1juD)duD +
Z 1

p

FY0jUD (
eF�10 eF1 (y1) juD)duD;

F ��0 (y0) =

Z p

0

FY1jUD (
eF�11 eF0 (y0) juD)duD + Z 1

p

FY0jUD (y0juD)duD;

where every term in F ��d (yd) is estimable. Such a result seems unknown in the literature. Also, the above

proof shows that if the pseudo-true values of an estimator take the form in Theorem 2, then as long as the

weight h(�) satis�es Proposition 1(iii) (especially, h(uD) � 0 for uD 2 [p; p] and
R p
p
h(uD)duD = 1), the results

of Proposition 6 hold. For future reference, we label the property in Proposition 6 as counterfactual-quantiles

matching. The following example numerically illustrates this property.

Example 4 Consider the running example with only the selection e¤ect. In this simple example,

FY1jUD (y1juD) = P
�
2U � y1jV = ��1(uD)

�
= �

�
y1=2� 0:7��1(uD)p

1� 0:72

�
;

FY0jUD (y0juD) = P
�
U � y0jV = ��1(uD)

�
= �

�
y0 � 0:7��1(uD)p

1� 0:72

�
;

eF1(y1) =

Z 1

0

FY1jUD (y1juD)h (uD) duD =
Z 1

0

�

�
y1=2� 0:7��1(uD)p

1� 0:72

�
6uD(1� uD)duD;

eF0(y0) =

Z 1

0

FY0jUD (y0juD)h (uD) duD =
Z 1

0

�

�
y0 � 0:7��1(uD)p

1� 0:72

�
6uD(1� uD)duD;

also, we need only consider the middle term of F �1 (y1) and F
�
0 (y0), i.e.,

F �1 (y1) =

Z 1

0

24��y1=2� 0:7��1(uD)p
1� 0:72

�
(1� uD) + �

0@ eF�10 � eF1 (y1)�� 0:7��1(uD)
p
1� 0:72

1AuD
35 duD;

F �0 (y0) =

Z 1

0

24�
0@ eF�11 � eF0 (y0)� =2� 0:7��1(uD)

p
1� 0:72

1A (1� uD) + ��y0 � 0:7��1(uD)p
1� 0:72

�
uD

35 duD:
The true cdfs are

F1(y1) = �
�y1
2

�
=

Z 1

0

�

�
y1=2� 0:7��1(uD)p

1� 0:72

�
duD;

F0(y0) = � (y0) =

Z 1

0

�

�
y0 � 0:7��1(uD)p

1� 0:72

�
duD;

so the di¤erence between F1(y1) and F �1 (y1) (F0(y0) and F
�
0 (y0)) depends on how di¤erent between eF�10 � eF1 (y1)�

and F�10 (F1 (y1)) = y1=2 ( eF�11 � eF0 (y0)� and F�11 (F0 (y0)) = 2y0). Although di¤erent from the uncon-

founded case, eF1(y1) 6= F1(y1) and eF0(y0) 6= F0(y0), eF�10 � eF1 (y1)� = F�10 (F1 (y1)) and eF�11 � eF0 (y0)� =
F�11 (F0 (y0)) as shown in Figure 3.

On the contrary, the following example shows that with essential heterogeneity, eF�10 � eF1 (y1)� 6= F�10 (F1 (y1))

and eF�11 � eF0 (y0)� 6= F�11 (F0 (y0)).
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Figure 3: eF1(�) 6= F1(�) and eF0(�) 6= F0(�), but eF�10 � eF1 (�)� = F0 (F1 (�)) and eF�11 � eF0 (�)� = F1 (F0 (�))
Example 5 Consider the running example with both the selection e¤ect and the essential heterogeneity. In
this case,

FY1jUD (y1juD) = P
�
V + 2U � y1jV = ��1(uD)

�
= �

�
y1=2� 1:2��1(uD)p

1� 0:72

�
;

FY0jUD (y0juD) = P
�
2V + U � y0jV = ��1(uD)

�
= �

�
y0 � 2:7��1(uD)p

1� 0:72

�
;

eF1(y1) =

Z 1

0

FY1jUD (y1juD)h (uD) duD =
Z 1

0

�

�
y1=2� 1:2��1(uD)p

1� 0:72

�
6uD(1� uD)duD;

eF0(y0) =

Z 1

0

FY0jUD (y0juD)h (uD) duD =
Z 1

0

�

�
y0 � 2:7��1(uD)p

1� 0:72

�
6uD(1� uD)duD;

and

F �1 (y1) =

Z 1

0

24��y1=2� 1:2��1(uD)p
1� 0:72

�
(1� uD) + �

0@ eF�10 � eF1 (y1)�� 2:7��1(uD)
p
1� 0:72

1AuD
35 duD;

F �0 (y0) =

Z 1

0

24�
0@ eF�11 � eF0 (y0)� =2� 1:2��1(uD)

p
1� 0:72

1A (1� uD) + ��y0 � 2:7��1(uD)p
1� 0:72

�
uD

35 duD:
The true cdfs are

F1(y1) = �

�
y1p
7:8

�
=

Z 1

0

�

�
y1=2� 1:2��1(uD)p

1� 0:72

�
duD;

F0(y0) = �

�
y0p
7:8

�
=

Z 1

0

�

�
y0 � 2:7��1(uD)p

1� 0:72

�
duD:
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Figure 4: eF�10 � eF1 (y1)� 6= F�10 (F1 (y1)), eF�11 � eF0 (y0)� 6= F�11 (F0 (y0)), F �1 (�) 6= F1(�) = F0(�) 6= F �0 (�)

Figure 4 shows that not only eF1(y1) 6= F1(y1) and eF0(y0) 6= F0(y0), but eF�10 � eF1 (y1)� 6= F�10 (F1 (y1)) = y1

and eF�11 � eF0 (y0)� 6= F�11 (F0 (y0)) = y0. Figure 4 also shows F �1 (y1) 6= F1(y1) and F �0 (y0) 6= F0(y0), which
explains why the IV-QRE of QTE is not consistent in Figure 2.

Finally, given F �d (�), we can express ��(�) in the following corollary.

Corollary 1 Under Assumptions P and Q, when J(Z) = p(Z),

��(�) = e�� eF0 (Q�0(�))� = e�� eF1 (Q�1(�))� ;
where e�(�) = eF�11 (�)� eF�10 (�).

Proof. From the proof of Theorem 2, eF1 (Q�1(�)) = eF0 (Q�0(�)), so
��(�) = eF�11 eF0 (Q�0(�))�Q�0(�) = eF�11 eF0 (Q�0(�))� eF�10 eF0 (Q�0(�))

= e�� eF0 (Q�0(�))� = e�� eF1 (Q�1(�))� :
This corollary states that the pseudo-QTE is the QTE for a mixed population at transformed quantile levels.

This interesting result is the main result of Wüthrich (2015) as stated in his Theorems 2 and 7. This corollary

generalizes his result to the continuous and/or multiple instruments case where the de�nition of the mixed

population is di¤erent.

We close this subsection by two further comments. First, given F �d , we can estimate �d by
R
yddF

�
d (yd),

but this estimator need not equal ��d even if Assumption RS holds; S.2.5 provides more discussions and some

numerical illustration. Second, although eFd is monotone, its �nite sample analog need not be, but we can
rearrange the original estimator before inversion as suggested by Chernozhukov et al. (2010). An interesting
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problem is to compare the estimator of ��(�) which rearranges the inverse quantile regression estimator of

Chernozhukov and Hansen (2006) and our estimator of ��(�) which rearranges eFd in the expression of F �d ,
but a detailed comparison is beyond the scope of this paper.

4.3 Local Sensitivity Analysis

From Proposition 6, the key assumption to guarantee the consistency of IV-QRE is

FY1jUD (y1juD) = FU jUD (F1 (y1) juD) and FY0jUD (y0juD) = FU jUD (F0 (y0) juD);

for the same function FU jUD (�juD) for any uD 2
�
p; p
�
. Generally,

FY1jUD (y1juD) = FU1jUD (F1 (y1) juD) and FY0jUD (y0juD) = FU0jUD (F0 (y0) juD);

where FU1jUD (�j�) and FU0jUD (�j�) may not be the same,19 so we assume FU1jUD (�j�)� FU0jUD (�j�) falls in the
parametrized space

F�� =
�
F�(�j�) : � 2M; 0 2M;F�(0juD) = F�(1juD) = 0;

Z 1

0

F�(ujuD)duD = 0; F 0(ujuD) = 0; u; uD 2 [0; 1]
�
;

where F�(0juD) = F�(1juD) = 0 because FU1jUD (0juD) = FU0jUD (0juD) = 0 and FU1jUD (1juD) = FU0jUD (1juD) =
1, and

R 1
0
F�(ujuD)duD = 0 because

R 1
0
FU1jUD (ujuD)duD =

R 1
0
FU0jUD (ujuD)duD = u. If we use g(�j�) for

shorthand of @
@�F

� (�j�)
��
�=0

, then g(0juD) = g(1juD) = 0 and
R 1
0
g(ujuD)duD = 0. Because

R 1
0
g(ujuD)duD =

0, g(ujuD) cannot be the same for all uD 2 [0; 1] unless g(ujuD) = 0. We assume g(�j�) 2 C
�
[0; 1]

2
�
; other-

wise, there is a point mass shift in u for some uD, or there is a sharp change in the shape of FUdjUD (ujuD)
for two close uD values.

Our targets are

D�
Fd
(g) (yd) � lim

�!0

F �d (yd;�)� Fd(yd)
�

and D�
� (g) (�) � lim

�!0

��(� ;�)��(�)
�

or path derivatives of F �d (yd) and �
�(�) along the path F��, where we use F �d (yd;�) and ��(� ;�) to indicate

the dependence of F �d and �
� on �, assume lim�!0

F�(�j�)
� ! g(�j�), and note that F �d (yd; 0) = Fd(yd) and

��(� ; 0) = �(�). We impose the following conditions to guarantee the limits in D�
Fd
and D�

� exist.

Assumption LF: supuD2[0;1];u2[0;1];�2N
���F�(ujuD)

�

��� <1, where N is a neighborhood of 0.

Proposition 7 Under Assumptions P, Q and LF,

D�
F1 (g) (y1) =

Z p

p

DFY1jUD (g) (y1juD)Fp(Z)(uD)duD +
Z 1

p

DFY1jUD (g) (y1juD) duD

=

Z 1

0

DFY1jUD (g) (y1juD)Fp(Z)(uD)duD;

D�
F0 (g) (y0) =

Z p

0

DFY0jUD (g) (y0juD) duD +
Z p

p

DFY0jUD (g) (y0juD) (1� Fp(Z)(uD))duD

=

Z 1

0

DFY0jUD (g) (y0juD) (1� Fp(Z)(uD))duD;

19Note that FU1jUD (�j�) = FU0jUD (�j�) means that the two copula functions Cd (ud; uD) = P (Ud � ud; UD � uD), d = 0; 1,
are completely the same. Deviation from FU1jUD (�j�) = FU0jUD (�j�) means di¤erence between C1 (u1; uD) and C0 (u0; uD).
Note further that since Ud and UD are not independent, FUdjUD (�juD) is not the same for all uD 2 [0; 1].
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and

D�
� (g) (�) =

D�
F0
(g)
�
F�10 (�)

�
f0
�
F�10 (�)

� �
D�
F1
(g)
�
F�11 (�)

�
f1
�
F�11 (�)

� ;

where

DFY1jUD (g) (y1juD) =
fY0jUD

�
F�10 F1 (y1) juD

�
ef0 �F�10 F1 (y1)

� Z p

p

g(F1 (y1) juD)h (uD) duD � g(F1 (y1) juD);

DFY0jUD (g) (y0juD) = g(F0 (y0) juD)�
fY1jUD

�
F�11 F0 (y0) juD

�
ef1 �F�11 F0 (y0)

� Z p

p

g(F0 (y0) juD)h (uD) duD

fYdjUD is the pdf of FYdjUD , efd (�) = R pp fYdjUD (�juD)h (uD) duD is the pdf of eFd, and fd is the pdf of Fd.
If g(�j�) 2 C

�
[0; 1]2

�
, then D�

Fd
(g) (yd) is a continuous linear mapping from C0

�
[0; 1]2

�
, a subspace of

C
�
[0; 1]2

�
, to C (Yd), and D�

� (g) (�) is a continuous linear mapping from C0
�
[0; 1]2

�
to C ([0; 1]), where

C0
�
[0; 1]2

�
�
n
g(�j�) : g 2 C

�
[0; 1]2

�
; g(0juD) = g(1juD) = 0 and

R 1
0
g(ujuD)duD = 0 for u; uD 2 [0; 1]

o
.

As D�
1 (g) in Proposition 3, D

�
F1
(g)(y1) depends on g(F1 (y1) juD) only for uD 2 [p; 1]; as D�

0 (g),

D�
F0
(g)(y0) depends on g(F0 (y0) juD) only for uD 2 [0; p]. This is understandable since only on these

areas of uD, F �1 and F
�
0 have mis-estimated FY1jUD (y1juD) and FY0jUD (y0juD), respectively.

DFY1jUD (y1juD) is the e¤ect of mis-estimating FY1jUD (y1juD) as FY0jUD (
eF�10 eF1 (y1) juD) andDFY0jUD (y0juD)

is the e¤ect of mis-estimating FY0jUD (y0juD) as FY1jUD ( eF�11 eF0 (y0) juD). The terms in DFY1jUD (y1juD) and
DFY0jUD (y0juD) can be well interpreted. For example, the �rst term of DFY1jUD (y1juD) is from the misspeci-
�cation of FU1jUD as FU0jUD in eF0 of FY0jUD ( eF�10 eF1 (y1) juD), and the second term is from the misspeci�cation
of FU1jUD as FU0jUD in FY0jUD of FY0jUD ( eF�10 eF1 (y1) juD). Note that
D�
F1 (g) (y1) =

R p
p
fY0jUD

�
F�10 F1 (y1) juD

�
Fp(Z)(uD)duD +

R 1
p
fY0jUD

�
F�10 F1 (y1) juD

�
duDR p

p
fY0jUD (F

�1
0 F1 (y1) juD)h (uD) duD

�
Z p

p

g(F1 (y1) juD)h (uD) duD �
"Z p

p

g(F1 (y1) juD)Fp(Z)(uD)duD +
Z 1

p

g(F1 (y1) juD)duD

#
;

where all terms (except those involving g which need to be speci�ed) are estimable. For example, although

fY0jUD (�juD) for uD 2 (p; 1] is not estimable,
R 1
p
fY0jUD (�juD) duD can be estimated by the derivative ofR 1

p
FY0jUD (�juD)duD which is equal to (1 � p)FY jD=0;p(Z)=p(�) and is estimable. Other terms such as Fd(�),

Fp(Z) (�) and fY0jUD (�juD) for uD 2 [p; p] are all estimable. Similarly,

D�
F0 (g) (y0) = �

R p
0 fY1jUD

�
F�11 F0 (y0) juD

�
duD +

R p
p
fY1jUD

�
F�11 F0 (y0) juD

�
(1� Fp(Z)(uD))duDR p

p
fY1jUD (F

�1
1 F0 (y0) juD)h (uD) duD

�
Z p

p

g(F0 (y0) juD)h (uD) duD +
"Z p

0

g(F0 (y0) juD)duD +
Z p

p

g(F0 (y0) juD)(1� Fp(Z)(uD))duD

#
;

where although fY1jUD (�juD) for uD 2 [0; p) is not estimable,
R p
0 fY1jUD (�juD) duD can be estimated by the

derivative of
R p
0 FY1jUD (�juD) duD which is equal to pFY jD=1;p(Z)=p(�) and is estimable. Finally, D�

� (g) (�) =

D�
F0
(g)(F�1

0 (�))
f0(F�1

0 (�))
� D�

F1
(g)(F�1

1 (�))
f1(F�1

1 (�))
involves further of fd

�
F�1d (�)

�
, while fd

�
F�1d (�)

�
can be estimated by

dFd(yd)
dyd

���
yd=F

�1
d (�)

or 1

fd(F�1
d (�))

can be estimated by Qd(�)
d� , the sparsity function for Qd(�).
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In summary, D�
Fd
(g) (�) and D�

� (g) (�) are estimable for a given g(�j�); only fY0jUD (�j�) is involved
in D�

F1
(g) and only fY1jUD (�j�) is involved in D�

F0
(g), which is an indication of misspeci�cation. Given

D�
F1
(g) (y1) and D�

F0
(g) (y0), we can study the path derivative of any Hadamard di¤erentiable functional of

F1 and F0, e.g., Lorenz curves and Gini coe¢ cients. Since such kind of calculation is standard, the details

are omitted.

Example 6 Consider the setup in the running example with only the selection e¤ect. Suppose g(ujuD) =
6u(1� u)(2uD � 1). It implies that the ranks of individuals who want most to participate move up, and visa
versa. Since only Fd (yd) is involved in D�

Fd
(g) (yd), we plot D�

Fd
(g) as a function of �d � Fd (yd) instead

of yd and denote it as D�
Fd
(g) (�d). To provide more intuition on the form of D�

Fd
(g) (�d) and D�

� (g) (�),

we report their formulas for this example below.

D�
F1 (g) (�1) =

R 1
0
fY0jUD

�
F�10 (�1) juD

�
Fp(Z)(uD)duDR 1

0
fY0jUD (F

�1
0 (�1) juD)h (uD) duD

Z 1

0

g(�1juD)h (uD) duD �
Z 1

0

g(�1juD)Fp(Z)(uD)duD;

D�
F0 (g) (�0) = �

R 1
0
fY1jUD

�
F�11 (�0) juD

�
(1� Fp(Z)(uD))duDR 1

0
fY1jUD (F

�1
1 (�0) juD)h (uD) duD

Z 1

0

g(�0juD)h (uD) duD

+

Z 1

0

g(�0juD)(1� Fp(Z)(uD))duD;

and

D�
� (g) (�) =

D�
F0
(g) (�)

f0
�
F�10 (�)

� � D�
F1
(g) (�)

f1
�
F�11 (�)

�
where

fY1jUD (y1juD) =
1

2
�

�
y1=2� 0:7��1(uD)p

1� 0:72

�
;

fY0jUD (y0juD) = �

�
y0 � 0:7��1(uD)p

1� 0:72

�
;

F�10 (�) = ��1 (�) ; F�11 (�) = 2��1 (�) ;

f0 (y0) = � (y0) ; f1 (y1) =
1

2
�
�y1
2

�
;

h(uD) = 6uD(1� uD); Fp(Z)(uD) = uD:

Figure 5 shows D�
Fd
(g) (�d) and D�

� (g) (�), where D
�
Fd
(g) (0) = D�

Fd
(g) (1) = 0 by g(0juD) = g(1juD) = 0

for uD 2 [0; 1]. For this local misspeci�cation, F �1 (�) tends to underestimate F1(�) (especially in the middle
quantiles), while F �0 (�) tends to overestimate F0(�) (especially in the middle quantiles). In other words, F �1
�rst-order stochastically dominates F1, while F �0 is �rst-order stochastically dominated by F0. This results

in an overestimation of �(�) (especially in the middle quantiles).

4.4 Using General Instruments

Now, consider a general instrument J(Z). As in Section 3.3, we add a subscript J to distinguish from the

case with p(Z) as the instrument.

Proposition 8 Under Assumptions P and Q, F �J1(y1) and F
�
J0(y0) take the same form as in Theorem 2
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Figure 5: g(ujuD), D�
F1
(g) (�1), D�

F0
(g) (�0) and D�

� (g) (�)

except replacing eF1 (y1) and eF0 (y0) by
eFJ1 (y1) =

Z
FY1jUD (y1juD)hJ (uD) duD;

eFJ0 (y0) =

Z
FY0jUD (y1juD)hJ (uD) duD;

respectively, where hJ (uD) is de�ned in Proposition 4.

Similar to the IVE case, the estimands depend on the instruments employed. Moreover, a general

instrument J(Z) may make the intuitive interpretation of F �d (yd) break down. This is because hJ (uD) may

not be nonnegative for all uD when a general instrument J(Z) is used (although
R
hJ (uD) duD = 1 and

hJ (0) = hJ (1) = 0 still hold) such that eFJd(�) may not be a genuine cdf anymore, i.e., eF�1Jd (�) in F �Jd(y1)
may not be well de�ned. As a result, the monotonicity assumption in Assumption 7 of Wütherich (2015),

where Z may be a continuous scalar and J(Z) = Z, need not hold unless p(Z) is monotonically increasing

in Z. In the discrete Z case, we can always reorder p(Z) to make it monotonically increasing. This is whyeF1(�) and eF0(�) are genuine cdfs in his Theorem 6.

As in Section 3.3, we discuss the discrete instrument case here. Besides considering the case with discrete

Z and using p(Z) as the instrument, we also consider the case in Wütherich (2015) where Z is a discrete

scalar and J(Z) = Z. We �rst discuss eFd(�). Assume p(Z) takes K values as in Section 3.3; then

eFd (yd) = K�1X
k=1

(pk+1 � pk)h(pk+1)
Z pk+1

pk

FYdjUD (ydjuD)
1

pk+1 � pk
duD =

K�1X
k=1

(pk+1 � pk)h(pk+1)F kd (yd);
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where h(pk+1) is de�ned in (6), and

F kd (yd) =
1

pk+1 � pk

Z pk+1

pk

FYdjUD (ydjuD)duD

=
E [1 (Y � yd) � 1 (D = d) jp(Z) = pk+1]� E [1 (Y � yd) � 1 (D = d) jp(Z) = pk]

P (D = djp(Z) = pk+1)� P (D = djp(Z) = pk)
;

k = 1; � � � ;K � 1, is the cdf of Yd for compliers Ck and is identi�able. If Z takes K values, fz1; � � � ; zKg,
with �1 < z1 < � � � < zK <1 such that p(Z) is a strictly monotone function of Z,20 then as J(Z) = Z,

eFJd (yd) = K�1X
k=1

(pk+1 � pk)hJ(zk+1)F kd (y1);

where

hJ(zk+1) =
Cov (Z; 1(Z � zk+1))PK�1

k=1 (pk+1 � pk)Cov (Z; 1(Z � zk+1))

is equivalent to the weight in Theorem 6 of Wütherich (2015). Given eFd (yd), we can see
F �1 (y1) =

KX
k=0

(pk+1 � pk)
n
F k1 (y1)

�
1� Fp(Z)(pk)

�
+ F k0 ( eF�10 eF1 (y1))Fp(Z)(pk)o ;

and

F �0 (y0) =

KX
k=0

(pk+1 � pk)
n
F k1 (

eF�11 eF0 (y0)) �1� Fp(Z)(pk)�+ F k0 (y0)Fp(Z)(pk)o ;
which are equivalent to the formulas in Theorem 6 of Wütherich (2015) when eFd (yd) is replaced byeFJd (yd), where F 01 (y1) = E [1 (Y � y1)Djp(Z) = p1] =p1 is the cdf of Y1 for always-takers, FK0 (y0) =
E [1 (Y � y0) (1�D) jp(Z) = pK ] = (1� pK) is the cdf of Y0 for never-takers, and F kd (�), k = 1; � � � ;K � 1,
is de�ned above. When K = 2, these formulas can be much simpli�ed. In this case,

eFd (yd) = FYdjC(yd);
so

F �1 (y1) = p1FY1jA(y1) + (p2 � p1)
h
FY1jC(y1)(1� q1) + FY0jC(F

�1
Y0jCFY1jC (y1))q1

i
+ (1� p2)FY0jN (F

�1
Y0jCFY1jC (y1))

= p1FY1jA(y1) + (p2 � p1)FY1jC(y1) + (1� p2)FY0jN (F
�1
Y0jCFY1jC (y1));

F �0 (y0) = (1� p2)FY0jN (y0) + (p2 � p1)
h
FY1jC(F

�1
Y1jCFY0jC (y0))(1� q1) + FY0jC(y0)q1

i
+ p1FY1jA(F

�1
Y1jCFY0jC (y0))

= (1� p2)FY0jN (y0) + (p2 � p1)FY0jC(y0) + p1FY1jA(F
�1
Y1jCFY0jC (y0));

as claimed in Theorem 1 of Wütherich (2015), where q1 = P (Z = z1), FY1jA(�); FY1jC(�); FY0jC(�) and FY0jN (�)
are the cdfs for always-takers, compliers and never-takers in the two counterfactual statuses and can be

identi�ed as in Abadie (2002) and Imbens and Rubin (1997).

Finally, when a general instrument J(Z) is used, D�
Fd
(g) (�) and D�

� (g) (�) in Section 4.3 take similar
forms except replacing h(uD) by hJ(uD) at all appearances of h(uD), so similar analysis as above can be

20Note that di¤erent Z values may generate the same p(Z) value, in which case we combine the corresponding Z values.
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applied. For example, when p(Z) is discrete,

D�
F1 (g) (�1) =

PK�1
k=1 (pk+1 � pk)Fp(Z)(pk)fk0

�
F�10 (�1)

�
+ (1� pK)fK0

�
F�10 (�1)

�PK�1
k=1 (pk+1 � pk)h(pk+1)fk0 (F

�1
0 (�1))

�
XK�1

k=1
(pk+1 � pk)h(pk+1)gk(�1)

�
�XK�1

k=1
(pk+1 � pk)Fp(Z)(pk)gk(�1) + (1� pK)gK(�1)

�
;

D�
F0 (g) (�0) = �

p1f
0
1

�
F�11 (�0)

�
+
PK�1

k=1 (pk+1 � pk)
�
1� Fp(Z)(pk)

�
fk1
�
F�11 (�0)

�PK�1
k=1 (pk+1 � pk)h(pk+1)fk1

�
F�11 (�0)

�
�
XK�1

k=1
(pk+1 � pk)h(pk+1)gk(�0)

+

�
p1g0(�0) +

XK�1

k=1
(pk+1 � pk)

�
1� Fp(Z)(pk)

�
gk(�0)

�
;

and D�
� (g) (�) =

D�
F0
(g)(�)

f0(F�1
0 (�))

� D�
F1
(g)(�)

f1(F�1
1 (�))

, where �d = Fd(yd) as in Example 6,

fkd (yd) =
1

pk+1 � pk

Z pk+1

pk

fYdjUD (ydjuD) duD; k = 1; � � � ;K � 1;

can be estimated by the derivative of F kd (yd),

fK0 (y0) =
1

1� pK

Z 1

pK

fY0jUD (y0juD) duD; f01 (y1) =
1

p1

Z p1

0

fY1jUD (y1juD) duD

can be estimated by the derivative of

FK0 (y0) =
1

1� pK

Z 1

pK

FY0jUD (y0juD) duD =
E [1 (Y � y0) (1�D) jp(Z) = pK ]

1� pK
= P (Y � y0jp(Z) = pK ; D = 0) ;

F 01 (y1) =
1

p1

Z p1

0

FY1jUD (y1juD) duD =
E [1 (Y � y1)Djp(Z) = p1]

p1
= P (Y � y1jp(Z) = p1; D = 1) ;

respectively, and

gk(u) =
1

pk+1 � pk

Z pk+1

pk

g(ujuD)duD; k = 0; 1; � � � ;K: (14)

As in Section 3.3, we can also �nd supD�
Fd
(�) � supg(� j�)2C10 D

�
Fd
(g) (�) and supD�

� (�) � supg(� j�)2C10 D
�
� (g) (�)

for each � 2 (0; 1), where C10 ([0; 1]) is de�ned at the end of Section 3.3. For example, to �nd supD�
� (�), we

can solve the following optimization problem:

max
g0(�);g1(�);��� ;gK(�)

(
D�
F0
(g) (�)

f0
�
F�10 (�)

� � D�
F1
(g) (�)

f1
�
F�11 (�)

�)

subject to
KX
k=0

(pk+1 � pk) gk (�) = 0 and
KX
k=0

(pk+1 � pk) gk (�)2 = 1:
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4.5 Partial Identi�cation Analysis

We now develop sharp bounds for Qd(�) and �(�). Our analyses are parallel to those in Heckman and

Vytlacil (2001b).

Theorem 3 Suppose Assumptions P and Q with (Q-4) replaced by (Q-40) hold.

(i) Q1(�) and Q0(�), � 2 (0; 1), have sharp bounds

I1(�) � Q1(�) � I1(�);
I0(�) � Q0(�) � I0(�);

where

I1(�) =

(
QY jp(Z);D

�
1� 1��

p

��� p; 1� ;
y
1
;

if p > 1� � ;
otherwise,

;

I1(�) =

(
QY jp(Z);D

�
�
p

��� p; 1� ;
y1;

if p � � ;
otherwise,

and

I0(�) =

(
QY jp(Z);D

�
1� 1��

1�p

��� p; 0� ;
y
0
;

if p < �;

otherwise,

I0(�) =

(
QY jp(Z);D

�
�
1�p

��� p; 0� ;
y0;

if p � 1� � ;
otherwise.

This implies �(�) has sharp bounds,

I�(�) � I1(�)� I0(�) � �(�) � I1(�)� I0(�) � I�(�):

(ii) p = 1 (p = 0) is su¢ cient for point identi�cation of Q1(�) (Q0(�)), and p = 1 and p = 0 are su¢ cient
for point identi�cation of �(�) for any �xed � 2 (0; 1). When assumption (Q-40) is replaced by (Q-4),
these su¢ cient conditions are also necessary.

Example 7 We use a speci�c example to provide some intuition for why I1(�) � Q1(�) � I1(�);21 similar
intuition can be applied to the bounds for Q0(�). From the proof of Theorem 3,

P (Y � yjp(Z) = p;D = 1) p � P (Y1 � y) � P (Y � yjp(Z) = p;D = 1) p+ (1� p):

Suppose (Y1; V ) � N
 
0;

 
1 �

� 1

!!
; then

P (Y � yjp(Z) = p;D = 1) p =

Z p

0

�

 
y � ���1(uD)p

1� �2

!
duD:

21The setup of this example is di¤erent from that of the running example because p = 0 and p = 1 there such that point
identi�cation can be achieved.
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Figure 6: Intuition for I1(�) � Q1(�) � I1(�): p = 0:8, � = 0:5, �1 = 0:15, �2 = 0:46 and �3 = 0:91

Figure 6 shows the bounds for P (Y1 � y) when p = 0:8 and � = 0:5. Inverting the bounds for P (Y1 � y), we
can get the bounds for Q1 (�). When � � 1� p, I1(�) = y1; when � > p, I1(�) = y1. Only if � 2 (1� p; p),
both bounds are nontrivial. This is not always possible; only if p > max(� ; 1� �) � 1=2 (p < min(� ; 1� �)),
neither the left nor the right bound for Q1(�) (Q0(�)) is trivial. Pushing � ! 0 or 1, we can see that there

are nontrivial bounds for Q1(�) (Q0(�)) for all � if and only if p = 1 (p = 0), but from Theorem 3(ii), these

nontrivial bounds coincide. In the �gure, I1(�2) = 0, so
�
I1(�); I1(�)

�
need not cover 0 for a given � . It is

also not hard to see that neither
�
I0(�); I0(�)

�
nor

�
I�(�); I�(�)

�
need cover 0 for a given � .

We �rst provide some comments on the bounds in Theorem 3(i). Note that Id(�) and Id(�) are increasing

functions of � ; hence the bound for Qd(�) shifts to the right as � increases. Also observe that

1� 1� �
p

� � � �

p
and 1� 1� �

1� p � � �
�

p
;

hence QY jp(Z);D (� jp; 1) and QY jp(Z);D
�
� jp; 0

�
lie within the bound for Q1(�) and Q0(�), respectively. This

implies that F1(�) = FY jp(Z);D(�jp; 1) and F0(�) = FY jp(Z);D(�jp; 0) are not rejectable in the absence of other
information. Evaluating the bounds for Q1(�) requires knowledge of p, y1, y1 and QY jp(Z);D ( �j p; 1) at
1 � 1��

p and �
p ; evaluating the bounds for Q0(�) requires knowledge of p, y0, y0 and QY jp(Z);D

�
�j p; 0

�
at

1� 1��
1�p and

�
1�p ; evaluating the bounds for �(�) requires knowledge of all of them; nevertheless, only four

conditional quantiles are needed for all these evaluations. Estimators of these objects can be constructed in

an obvious way, so are omitted here.

We next turn to the su¢ cient and necessary conditions for point identi�cation in Theorem 3(ii). Compar-

ing with the identi�cation result in Proposition 5, we require not only p(1) > p(0) but further that p(1) = 1

and p(0) = 0 for point identifying Q1(�) and Q0(�). This is of course due to the general assumption on the

outcome equations as discussed in Section 4.1. Our results are parallel to those of Heckman and Vytlacil

(2001b) but with subtle di¤erences. Although p = 0 and p = 1 are su¢ cient for point identi�cation of �(�),
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they are not necessary when Yd is not continuously distributed. Here, note that since assumption (Q-40)

requires only P (Yd 2 YxdjX = x) = 1 not supp(YdjX = x) = Yxd, the bounds for �(�) in the theorem can

be applied to cases with discrete, continuous or mixed response variables. In S.2.4, we provide an example

to illustrate that p = 0 and p = 1 are not necessary for point identi�cation of �(�) when Yd is binary. Note

further that we require only that Y j (p(Z) = p;D = 1) and Y j
�
p(Z) = p;D = 0

�
are continuously distributed

with a positive density on (y
1
; y1) and (y0; y0) respectively to make p = 0 and p = 1 necessary for point

identi�cation of �(�), but Assumption (Q-4) implies this condition.

5 The Least Squares Estimator

The LSE estimates the ATE by the coe¢ cient of D in the linear regression of Y on (1; D). The following

theorem states the resulting pseudo-true values.

Theorem 4 Under Assumptions A and P,

�1 =

Z p

0

E [Y1jUD = uD]
E [p(Z)]

duD +

Z p

p

E [Y1jUD = uD]
1� Fp(Z)(uD)
E [p(Z)]

duD;

�0 =

Z p

p

E [Y0jUD = uD]
Fp(Z)(uD)

E [1� p(Z)]duD +
Z 1

p

E [Y0jUD = uD]
E [1� p(Z)] duD

and

� = �1 � �0 =
Z 1

0

MTE(uD)!(uD)duD;

where

!(uD) =

(
1 + E[U1jUD=uD]!1(uD)�E[U0jUD=uD]!0(uD)

MTE(uD)
if MTE(uD) 6= 0

0 otherwise,

with

!1(uD) =
1� Fp(Z)(uD)
E [p(Z)]

and !0(uD) =
Fp(Z)(uD)

E [1� p(Z)] :

Since E [p(Z)] =
R 1
0

�
1� Fp(Z)(p)

�
dp = p+

R p
p

�
1� Fp(Z)(p)

�
dp, �1 is a weighted average of E [Y1jUD = uD]

among uD 2 [0; p], where the weight on [0; p] is a constant 1
E[p(Z)] and the weight on [p; p] is

1�Fp(Z)(uD)
E[p(Z)] .

Similarly, since 1 � E [p(Z)] = 1 � p +
R p
p
Fp(Z)(uD), �0 is a weighted average of E [Y0jUD = uD] among

uD 2
�
p; 1
�
, where the weight on [p; 1] is a constant 1

1�E[p(Z)] and the weight on [p; p] is
Fp(Z)(uD)

1�E[p(Z)] . Actually,

since Fp(Z)(uD) = 0 for uD 2 [0; p] and Fp(Z)(uD) = 1 for uD 2 [p; 1], �d can be re-written as

�1 =

Z 1

0

E [Y1jUD = uD]
1� Fp(Z)(uD)
E [p(Z)]

duD and �0 =
Z 1

0

E [Y0jUD = uD]
Fp(Z)(uD)

E [1� p(Z)]duD:

When E [Y1jUD = uD] = �1, �1 = �1, and when E [Y0jUD = uD] = �0, �0 = �0. Di¤erent from ��1, �1 does

not extrapolate E [Y1jUD = uD] to (p; 1]; rather, it averages E [Y1jUD = uD] over uD�s that are guaranteed
to be treated given the data. Similarly, �0 does not extrapolate E [Y0jUD = uD] to [0; p) but averages
E [Y0jUD = uD] over uD�s that are guaranteed to be untreated given the data. Actually, it is not hard to
see that �1 = E

h
D

E[D]Y
i
= E

h
D

E[D]Y1

i
uses only treated data and �0 = E

h
1�D

1�E[D]Y
i
= E

h
1�D

1�E[D]Y0

i
uses only untreated data. As mentioned before,

Z p

0

E [Y1jUD = uD] duD = pE
�
Y jD = 1; p(Z) = p

�
andR 1

p
E [Y0jUD = uD] duD = (1� p)E [Y jD = 1; p(Z) = p] are identi�able, so �1 and �0 are indeed identi�able.
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From the formula of �1 and �0, we can see

��� =

Z p

0

E [U1 � U0jUD = uD]
E [p(Z)]

duD +

Z p

p

E [U1 � U0jUD = uD]
1� Fp(Z)(uD)
E [p(Z)]

duD (I)

+

Z p

0

E [U0jUD = uD]
E [p(Z)]

duD +

Z p

p

E [U0jUD = uD]
�
1� Fp(Z)(uD)
E [p(Z)]

�
Fp(Z)(uD)

E [1� p(Z)]

�
duD

�
Z 1

p

E [U0jUD = uD]
E [1� p(Z)] duD (II).

As a result, when E [U1 � U0jUD = uD] = 0 over uD 2 [0; p], the (I) part of bias will be gone. When

E [U0jUD = uD] = 0 over uD 2 [0; 1], the (II) part of bias will be gone. The (I) part of bias comes solely
from �1, while the (II) part of bias comes from both �1 and �0. To understand such a result, note that

Y = Y0+(Y1�Y0)D = �0+��D+U0+(U1�U0)D. To consistently estimate�, we need E [U1 � U0jD = 1] = 0

and E [U0jD] = 0.22 Violation of the former generates the (I) part of bias and violation of the latter generates
the (II) part of bias. The IVE eliminates the (II) part instead of the �rst part of bias, so it must extend the

estimation of �1 to (p; 1] and the estimation of �0 to [0; p) to cure this bias. Note further that the weight

!(uD) is the same as in HV. !(uD) need not be positive, and
R 1
0
!(uD)duD need not be one, so even if

E [U1 � U0jUD = uD] = 0, � = �
Z 1

0

!(uD)duD need not equal �.

To provide more intuition on the discussion above, we consider the discrete instrument case here. We

will use the same setup and notations as in Section 3.3. Now,

�1 =
K�1X
k=0

1� Fp(Z)(pk)
E [p(Z)]

(pk+1 � pk)
Z pk+1

pk

E [Y1jUD = uD]
pk+1 � pk

duD =
K�1X
k=0

1� Fp(Z)(pk)
E [p(Z)]

(pk+1 � pk)�k1 ;

�0 =

KX
k=1

Fp(Z)(pk)

E [1� p(Z)] (pk+1 � pk)
Z pk+1

pk

E [Y0jUD = uD]
pk+1 � pk

duD =

KX
k=1

Fp(Z)(pk)

E [1� p(Z)] (pk+1 � pk)�
k
0 ;

� =
p1

E [p(Z)]
�01 +

K�1X
k=1

(pk+1 � pk)
�
1� Fp(Z)(pk)
E [p(Z)]

�k1 �
Fp(Z)(pk)

E [1� p(Z)]�
k
0

�
� 1� pK
E [1� p(Z)]�

K
0 :

When K = 2,

�1 =
p1

E [p(Z)]
�1jA +

1� Fp(Z)(p1)
E [p(Z)]

(p2 � p1)�1jC ;

�0 =
Fp(Z)(p1)

E [1� p(Z)] (p2 � p1)�0jC +
1� p2

E [1� p(Z)]�0jN ;

� =
p1

E [p(Z)]
�1jA + (p2 � p1)

�
1� Fp(Z)(p1)
E [p(Z)]

�1jC �
Fp(Z)(p1)

E [1� p(Z)]�0jC
�
� 1� p2
E [1� p(Z)]�0jN ;

where �1 is a weighted average of �1jA and �1jC , and �0 is a weighted average of �0jC and �0jN . Indeed, there

is no extrapolation in �d, and � is di¤erent from the LATE. When �1jA = �1jC , �1 = �1; when �0jC = �0jN ,

�0 = �0; when �1jA = �1jC and �0jC = �0jN , � = �.

22Strictly speaking, we only require E [U0 + (U1 � U0)DjD = 1] = E [U0 + (U1 � U0)DjD = 0], i.e., E[U1jD = 1] =
E [U0jD = 0]. However, E[U1jD = 1] � E [U0jD = 0] = (E [U1jD = 1]� E [U0jD = 1]) + (E [U0jD = 1]� E [U0jD = 0]), so
E [U1 � U0jD = 1] = 0 and E [U0jD] = 0 are su¢ cient for consistency of the LSE.
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The bounds in Section 3.4 can still be used to assess the validity of LSE. We next conduct the LSA on

�d and �. Assume (E[U1 � U0jUD = uD]; E [U0jUD = uD]) stays in a parametrized space

G� =
��
G� (�) ; G0� (�)

�
: � 2M; 0 2M;

�
G0(uD); G

0
0(uD)

�
= 0; uD 2 [0; 1],Z 1

0

G�(uD)duD = 0, and
Z 1

0

G0�(uD)duD = 0

�
:

Our targets are

Dd

�
g; g0

�
� lim

�!0

�d(�)� �d
�

and D�

�
g; g0

�
= lim

�!0

�(�)��
�

;

where we use �d(�) and �(�) to indicate the dependence of �d and � on � with �d(0) = �d and �(0) = �,

and assume lim�!0
G�(�)
� ! g(�) and lim�!0

G0
�(�)
� ! g0(�). We impose the following conditions to guarantee

the limits in Dd and D� exist.

Assumption LA0: supuD2[0;1];�2N
���G�(uD)

�

��� < 1, and supuD2[0;1];�2N ���G0
�(uD)
�

��� < 1 where N is a neigh-

borhood of 0.

Proposition 9 Under Assumptions A, P and LA0,

D1

�
g; g0

�
=

Z p

0

g(uD) + g
0(uD)

E [p(Z)]
duD +

Z p

p

1� Fp(Z)(uD)
E [p(Z)]

�
g(uD) + g

0(uD)
�
duD

=

Z 1

0

1� Fp(Z)(uD)
E [p(Z)]

�
g(uD) + g

0(uD)
�
duD;

D0

�
g; g0

�
=

Z p

p

g0(uD)
Fp(Z)(uD)

E [1� p(Z)]duD +
Z 1

p

g0(uD)

E [1� p(Z)]duD

=

Z 1

0

g0(uD)
Fp(Z)(uD)

E [1� p(Z)]duD;

and

D�

�
g; g0

�
=

Z p

0

g(uD)

E [p(Z)]
duD +

Z p

p

1� Fp(Z)(uD)
E [p(Z)]

g(uD)duD

+

Z p

0

g0(uD)

E [p(Z)]
duD +

Z p

p

�
1� Fp(Z)(uD)
E [p(Z)]

�
Fp(Z)(uD)

E [1� p(Z)]

�
g0(uD)duD �

Z 1

p

g0(uD)

E [1� p(Z)]duD

=

Z 1

0

1� Fp(Z)(uD)
E [p(Z)]

g(uD)duD +

Z 1

0

�
1� Fp(Z)(uD)
E [p(Z)]

�
Fp(Z)(uD)

E [1� p(Z)]

�
g0(uD)duD

= D1

�
g; g0

�
�D0

�
g; g0

�
:

The proof is similar to that of Proposition 3, so omitted. Note that D0

�
g; g0

�
only involves g0, while

D1

�
g; g0

�
and D�

�
g; g0

�
involve both g and g0. In other words, only the misspeci�cation of E [U0jUD = uD]

will a¤ect the consistency of �0, while the misspeci�cation of both E [U0jUD = uD] and E [U1 � U0jUD = uD]
a¤ect the consistency of �1. From this proposition,Dd

�
g; g0

�
andD�

�
g; g0

�
are continuous linear functionals

on C0 ([0; 1])2, where C0 ([0; 1]) is de�ned in Section 3.2.
The following example numerically illustrates these path derivatives.

Example 8 Consider the setup in the running example with both the selection e¤ect and the essential het-
erogeneity. Suppose g(uD) = 1� 2uD as in Example 2 and g0(uD) = uD � 0:5, i.e., the economic status of
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the individual with higher propensity to participate is relatively low when the treatment is absent. Then

D1

�
g; g0

�
=

Z 1

0

2 (1� uD) (0:5� uD)duD =
1

6
;

D0

�
g; g0

�
=

Z 1

0

2uD(uD � 0:5)duD =
1

6
;

D�

�
g; g0

�
= D1

�
g; g0

�
�D0

�
g; g0

�
= 0:

In this local misspeci�cation, both �1 and �0 overestimate their corresponding true value, but the biases o¤set

each other such that � can be consistently estimated. Of course, it is easy to construct examples where �

cannot be consistently estimated.

Finally, when p(Z) is discrete,

D1

�
g; g0

�
=

XK�1

k=0
(pk+1 � pk)

�
gk + g

0
k

� 1� Fp(Z)(pk)
E [p(Z)]

;

D0

�
g; g0

�
=

XK

k=1
(pk+1 � pk) g0k

Fp(Z)(pk)

1� E [p(Z)] ;

and D�

�
g; g0

�
= D1

�
g; g0

�
�D0

�
g; g0

�
, where gk, k = 0; 1; � � � ;K � 1, is de�ned in (7), and

g0k =
1

pk+1 � pk

Z pk+1

pk

g0(uD)duD; k = 0; 1; � � � ;K:

To compare with supD�
d and supD

�
� at the end of Section 3.3, we can consider supDd � sup(g(�);g0(�))2C210 Dd

�
g; g0

�
and supD� � sup(g(�);g0(�))2C210 D�

�
g; g0

�
, where C210 ([0; 1]) �

n�
g (�) ; g0 (�)

�
2 C0 ([0; 1])2 :

R 1
0

�
g(uD)

2 + g0(uD)
2
�
duD = 1

o
,

i.e., the norm of total deviation is normalized to be 1. For example, supD� can be achieved through the

following maximization problem:

max
g0;g1;��� ;gK ;g00 ;g01 ;��� ;g0K

�
D1

�
g; g0

�
�D0

�
g; g0

�	
subject to

KX
k=0

(pk+1 � pk) gk = 0,
KX
k=0

(pk+1 � pk) g0k = 0 and
KX
k=0

(pk+1 � pk)
h
(gk)

2
+
�
g0k
�2i

= 1:

6 The Quantile Regression Estimator

The QRE estimates the QTE by the coe¢ cient of D in the quantile regression of Y on (1; D). The following

theorem states the resulting pseudo-true value.

Theorem 5 Under Assumptions P and Q,

F 1(y1) =

Z p

0

FY1jUD (y1juD)
E [p(Z)]

duD +

Z p

p

FY1jUD (y1juD)
1� Fp(Z)(uD)
E [p(Z)]

duD;

F 0(y0) =

Z p

p

FY0jUD (y0juD)
Fp(Z)(uD)

E [1� p(Z)]duD +
Z 1

p

FY0jUD (y0juD)
E [1� p(Z)] duD;
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and

�(�) = F
�1
1 (�)� F�10 (�) :

The formula for F d is similar to �d except that E [YdjUD = uD] is replaced by FYdjUD (ydjuD), so some
comments on �d can be applied to F d, e.g., there is no extrapolation, F d is estimable and the two terms

in F d can be combined. On the other hand, di¤erent from F �1 , F 1 involves only FY1jUD but not FY0jUD ;

similarly, F 0 involves only FY0jUD but not FY1jUD . This makes the expression for F d and �(�) much neater.

From the last section,
R p
0

1
E[p(Z)]duD +

R p
p

1�Fp(Z)(uD)
E[p(Z)] duD = 1 and

1�Fp(Z)(uD)
E[p(Z)] � 0, so F 1(y1) is a genuine

cdf. Similarly, F 0(y0) is a genuine cdf. This makes the inverting operation in �(�) valid. This also implies

that if FYdjUD (ydjuD) = FYd(yd) as in the unconfounded case, F d = Fd, and thus �(�) = � (�). Note also
that di¤erent from F �d and �

�
d, �d =

R
yddF d(yd) regardless of whether there is endogeneity.

We can also decompose the bias in F d into the part due to the selection e¤ect and the part due to

the essential heterogeneity. The selection e¤ect means FU0jUD (u0juD) 6= u0 (or FY0jUD (y0juD) 6= FY0(y0))

and the essential heterogeneity means FU1jUD 6= FU0jUD (or F�1Y0jUD
�
FY1jUD (y1juD)juD

�
6= F�10 (F1 (y1))).

Obviously, F 0 only su¤ers from the selection e¤ect, while F 1 su¤ers from both. To see that, note that

F 0(y0)�F0(y0) =
Z p

p

�
FU0jUD (F0 (y0) juD)� F0(y0)

� Fp(Z)(uD)

E [1� p(Z)]duD+
Z 1

p

�
FU0jUD (F0 (y0) juD)� F0(y0)

�
E [1� p(Z)] duD

and

F 1(y1)� F1(y1) =

Z p

0

FU1jUD (F1(y1)juD)� F1(y1)
E [p(Z)]

duD +

Z p

p

�
FU1jUD (F1(y1)juD)� F1(y1)

� 1� Fp(Z)(uD)
E [p(Z)]

duD

=

Z p

0

FU1jUD (F1(y1)juD)� FU0jUD (F1(y1)juD) + FU0jUD (F1(y1)juD)� F1(y1)
E [p(Z)]

duD

+

Z p

p

�
FU1jUD (F1(y1)juD)� FU0jUD (F1(y1)juD) + FU0jUD (F1(y1)juD)� F1(y1)

� 1� Fp(Z)(uD)
E [p(Z)]

duD;

where FU1jUD (F1(y1)juD)�FU0jUD (F1(y1)juD) 6= 0 is due to the essential heterogeneity and FU0jUD (Fd (yd) juD)�
Fd (yd) 6= 0 is due to the selection e¤ect.
As in the last section, we consider the discrete instrument case to aid intuition. Here, we employ the

notations in Section 4.4.

F 1(y1) =

K�1X
k=0

1� Fp(Z)(pk)
E [p(Z)]

(pk+1 � pk)
Z pk+1

pk

FY1jUD (y1juD)
pk+1 � pk

duD =

K�1X
k=0

1� Fp(Z)(pk)
E [p(Z)]

(pk+1 � pk)F k1 (y1);

F 0(y0) =
KX
k=1

Fp(Z)(pk)

E [1� p(Z)] (pk+1 � pk)
Z pk+1

pk

FY0jUD (y0juD)
pk+1 � pk

duD =
KX
k=1

Fp(Z)(pk)

E [1� p(Z)] (pk+1 � pk)F
k
0 (y0)

take similar forms as �d. When K = 2,

F 1(y1) =
p1

E [p(Z)]
F1jA(y1) +

1� Fp(Z)(p1)
E [p(Z)]

(p2 � p1)F1jC(y1);

F 0(y0) =
Fp(Z)(p1)

E [1� p(Z)] (p2 � p1)F0jC(y0) +
1� p2

E [1� p(Z)]F0jN (y0);

so F 1 (�) is a weighted average of F1jA (�) and F1jC (�), and F 0 is a weighted average of F0jC (�) and F0jN (�).
Like �d, there is no extrapolation in F d (�), and di¤erent from F �d (�), F d (�) involves only two rather than
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three types of participants.

The bounds developed in Section 4.5 can still be used to assess the validity of QRE. We next conduct

the LSA on F d and �(�). Assume
�
FU1jUD (�j�)� FU0jUD (�j�); FU0jUD (�j�)

�
stays in a parametrized space

F� =
n
(F�(�j�); F�0 (�j�)) : � 2M; 0 2M;F�(0juD) = F�(1juD) = 0;

R 1
0
F�(ujuD)duD = 0;

F�0 (0juD) = 0; F�0 (1juD) = 1; F�0 (ujuD) is nondecreasing in u,
R 1
0
F�0 (ujuD)duD = u;

F 0(ujuD) = 0; F 00 (ujuD) = u; u; uD 2 [0; 1]
	
:

Our targets are

DFd

�
g; g0

�
(yd) � lim

�!0

F d(yd;�)� Fd(yd)
�

and D�

�
g; g0

�
(�) = lim

�!0

�(� ;�)��(�)
�

;

where we use F d(yd;�) and �(� ;�) to indicate the dependence of F d(yd) and �(�) on � with F d(yd; 0) =

Fd(yd) and �(� ; 0) = � (�), and assume lim�!0
F�(ujuD)

� ! g(�j�) 2 C
�
[0; 1]2

�
and lim�!0

F�
0 (ujuD)�u

� !
g0(ujuD) 2 C

�
[0; 1]2

�
. We impose the following conditions to guarantee the limits in D�

Fd
and D�

� exist.

Assumption LF0: supuD2[0;1];u2[0;1];�2N
���F�(ujuD)

�

��� < 1 and supuD2[0;1];u2[0;1];�2N
���F�

0 (ujuD)�u
�

��� < 1,
where N is a neighborhood of 0.

Proposition 10 Under Assumptions P, Q and LF0,

DF1

�
g; g0

�
(y1) =

Z p

0

g(F1(y1)juD) + g0(F1(y1)juD)
E [p(Z)]

duD +

Z p

p

1� Fp(Z)(uD)
E [p(Z)]

�
g(F1(y1)juD) + g0(F1(y1)juD)

�
duD

=

Z 1

0

1� Fp(Z)(uD)
E [p(Z)]

�
g(F1(y1)juD) + g0(F1(y1)juD)

�
duD;

DF0

�
g; g0

�
(y0) =

Z p

p

Fp(Z)(uD)

E [1� p(Z)]g
0(F0(y0)juD)duD +

Z 1

p

g0(F0(y0)juD)
E [1� p(Z)] duD

=

Z 1

0

Fp(Z)(uD)

E [1� p(Z)]g
0(F0(y0)juD)duD;

and

D�

�
g; g0

�
(�) =

DF0

�
g; g0

� �
F�10 (�)

�
f0
�
F�10 (�)

� �
DF1

�
g; g0

� �
F�11 (�)

�
f1
�
F�11 (�)

� :

The proof for DFd is similar to that in Proposition 3 and the proof for D� (�) is similar to that for D�
� (�),

so omitted. Similar to D0

�
g; g0

�
, DF0

�
g; g0

�
(y0) only involves g0, and similar to D1

�
g; g0

�
and D�

�
g; g0

�
,

DF1

�
g; g0

�
(y1) and D�

�
g; g0

�
(�) involve both g and g0. From this proposition, DFd

�
g; g0

�
(yd) is a con-

tinuous linear mapping from C0
�
[0; 1]2

�2
to C (Yd), and D� (g) (�) is a continuous linear mapping from

C0
�
[0; 1]2

�2
to C ([0; 1]), where C0

�
[0; 1]2

�
is de�ned in Section 4.3.

The following example numerically illustrates these path derivatives.

Example 9 Consider the setup in the running example with both the selection e¤ect and the essential het-
erogeneity. Suppose g(ujuD) = 6u(1� u)(2uD � 1) as in Example 6 and g0(ujuD) = 3u(1� u)(1� 2uD). g0

implies that the ranks of individuals who want most to participate move down in their untreated state (but

not as much as in g), and visa versa.

Since only Fd (yd) is involved in DFd

�
g; g0

�
(yd), as in D�

Fd
, we plot DFd

�
g; g0

�
as a function of �d �

Fd (yd) instead of yd and denote it as DFd

�
g; g0

�
(�d). To provide more intuition on the form of DFd

�
g; g0

�
(�d)
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and D�

�
g; g0

�
(�), we report their formulas for this example below.

DF1

�
g; g0

�
(�1) =

Z 1

0

2 (1� uD)
�
g(�1juD) + g0(�1juD)

�
duD;

DF0

�
g; g0

�
(�0) =

Z 1

0

2uD � g0(�0juD)duD;

and

D�

�
g; g0

�
(�) =

DF0

�
g; g0

�
(�)

f0
�
F�10 (�)

� �
DF1

�
g0
�
(�)

f1
�
F�11 (�)

�
where

F�10 (�) = F�11 (�) =
p
7:8��1 (�) ;

f0 (y) = f1 (y) =
1p
7:8
�

�
yp
7:8

�
:

Figure 7 shows DFd

�
g; g0

�
(�d) and D�

�
g; g0

�
(�), where DFd

�
g; g0

�
(0) = DFd

�
g; g0

�
(1) = 0 by g(0juD) =

g(1juD) = g0(0juD) = g0(1juD) = 0 for uD 2 [0; 1]. For this local misspeci�cation, DF1 = DF0 < 0, so F d(�)
tends to underestimate Fd(�) (especially in the middle quantiles), but the biases o¤set each other such that
a consistent estimation of �(�) is achieved. Of course, it is easy to construct examples where � cannot be

consistently estimated.
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Figure 7: g0(ujuD), DF1

�
g; g0

�
(�1), DF0

�
g; g0

�
(�0) and D�

�
g; g0

�
(�)
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Finally, when p(Z) is discrete,

DF1

�
g; g0

�
(�1) =

XK�1

k=0
(pk+1 � pk)

�
gk(�1) + g

0
k(�1)

� 1� Fp(Z)(pk)
E [p(Z)]

;

DF0

�
g; g0

�
(�0) =

XK

k=1
(pk+1 � pk) g0k(�0)

Fp(Z)(pk)

1� E [p(Z)] ;

and D�

�
g; g0

�
(�) =

DF0(g;g
0)(�)

f0(F�1
0 (�))

� DF1(g
0)(�)

f1(F�1
1 (�))

, where gk(u), k = 0; 1; � � � ;K � 1, is de�ned in (14), and

g0k(u) =
1

pk+1 � pk

Z pk+1

pk

g0(ujuD)duD; k = 0; 1; � � � ;K:

To compare with supD�
Fd
(�) and supD�

� (�) for each � 2 (0; 1) at the end of Section 4.4, we can con-

sider supDFd (�) � sup(g(� j�);g0(� j�))2C210 DFd

�
g; g0

�
(�) and supD� (�) � sup(g(� j�);g0(� j�))2C210 D�

�
g; g0

�
(�),

where C210 ([0; 1]) is de�ned at the end of Section 5. Checking the formulas of DFd

�
g; g0

�
(�) and Dd

�
g; g0

�
,

we can see that

supDFd (�) = supDd for any � 2 (0; 1) .

As to supD� (�), it can be achieved through the following maximization problem:

max
g0(�);��� ;gK(�);g00(�);��� ;g0K(�)

(
DF0

�
g; g0

�
(�)

f0
�
F�10 (�)

� �
DF1

�
g0
�
(�)

f1
�
F�11 (�)

�)

subject to

KX
k=0

(pk+1 � pk) gk (�) = 0,
KX
k=0

(pk+1 � pk) g0k (�) = 0 and
KX
k=0

(pk+1 � pk)
h
gk (�)

2
+ g0k (�)

2
i
= 1:

7 Illustrative Empirical Application

In this section, we use the data from Angrist (1990) to illustrate the implementation of our analyses. For

this application, Y is the annual earning, D is the Vietnam veteran status and Z is the U.S. draft lottery.

The data set contains information about 11637 white men, born in 1950-1953, from the March Current

Population Surveys of 1979 and 1981-1985; among which, 2461 are Vietnam veterans and 3234 are eligible

for U.S. military service. See Abadie (2002) for additional information on the data and the construction of

the variables.

Using notations in Sections 3.3, 3.4, 4.4 and 4.5, K = 2; p1 = p = 0:179 and p2 = p = 0:295, so there are

p1 = 17:9% always-takers, 1� p2 = 70:5% never-takers, and p2 � p1 = 11:6% compliers. Also,

�1jA =
E[Y DjZ=0]

p1
= 11301:54;

�1jC =
E[Y DjZ=1]�E[Y DjZ=0]

p2�p1 = 11637:21;

�0jC =
E[Y (1�D)jZ=1]�E[Y (1�D)jZ=0]

p1�p2 = 12915:00;

�0jN = E[Y (1�D)jZ=1]
1�p2 = 11462:32;

so by the results in Section 3.3,

��1 = 10552:86, �
�
0 = 11830:64 and �

� = LATE = �1277:78:
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Figure 8: eFd (�), F �d (�) and F d(�)
As expected, �� < 0; i.e., participating the Vietnam war is harmful to subsequent earnings. It is interesting

to observe that �1jA < �1jC and �0jC > �0jN ; i.e., the average earning of always-taker veterans is lower than

that of complier veterans, and the average earning of never-taker non-veterans is lower than that of complier

non-veterans. As to the shape of hd and h, note that h1(p2) = 7:10; h0(p2) = �1:55 and h(p2) = 8:65, so

there is indeed overweighting of E[Y1jUD = uD] in ��1 and E[Y0jUD = uD] in ��0 for uD 2 (p1; p2].
We next conduct the LSA and the partial identi�cation analysis for the IVE. For the former, we use the

fmincon function of matlab to �nd that

supD�
1 = 2:24, supD

�
0 = 0:68 and supD

�
� = 2:77:

For the latter, it turns out that

�1 2 [I1; I1] = [3372:67; 39098:01];

�0 2 [I0; I0] = [9574:66; 20828:66];

� 2 [I�; I�] = [�17455:99; 29523:34]:

All these bounds cover the corresponding pseudo-true values, and [I�; I�] covers 0, i.e., the bounds for �

cannot exclude null ATE.

We now turn to the analysis for the IV-QRE. From Abadie (2002) and Imbens and Rubin (1997),

FY1jA (y1) =
E[1(Y�y1)DjZ=0]

p1
= P (Y � y1jZ = 0; D = 1) ;

FY1jC (y1) =
E[1(Y�y1)DjZ=1]�E[1(Y�y1)DjZ=0]

p2�p1 ;

FY0jC (y0) =
E[1(Y�y0)(1�D)jZ=1]�E[1(Y�y0)(1�D)jZ=0]

p1�p2 ;

FY0jN (y0) =
E[1(Y�y0)(1�D)jZ=1]

1�p2 = P (Y � y0jZ = 1; D = 0) :
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Figure 9: Bounds for Qd(�) and �(�), � 2 [0:12; 0:95]

Figure 8 shows eFd (�)(= FYdjC (�)) and F �d (�) whose formulas are stated in Section 4.4. Recall that �djC =R
yddFYdjC (yd) but �

�
d 6=

R
yddF

�
d (yd). Note also that from the tests in Section 4.1 of Kitagawa (2015), the

inversion of FYdjC (�) in F �d (�) is justi�ed. In �nite samples, we rearrange FYdjC (�) before inversion to guarantee
the monotonicity of F �d (�).23 These functions are similar to those reported in Section 3.1 of Chernozhukov et
al. (2010). Figure 9 shows the sharp bounds for Qd(�) and �(�), � 2 [0:12; 0:95]. Here, we restrict � � 0:12
because there are about 9% Y1 = 0 and 11% Y0 = 0 in the sample. From these bounds, we can see that

for � 2 [0:12; 0:95], (i) Q�d(�) 2 [Id(�); Id(�)]; (ii) 0 2
�
I�(�); I�(�)

�
and ��(�) 2

�
I�(�); I�(�)

�
;24 (iii) the

width of the bounds depends on � .

For the LSA, we report supD�
Fd
(�) and supD�

� (�) in Section 4.4. Since K = 2, the formulas for

D�
Fd
(g) (�) and D�

� (g) (�) can be much simpli�ed. Speci�cally,

D�
F1 (g) (�1) = (1� p2)

"
f20
�
F�10 (�1)

�
f10 (F

�1
0 (�1))

g1(�1)� g2(�1)
#

D�
F0 (g) (�0) = p1

"
g0(�0)�

f01
�
F�11 (�0)

�
f11
�
F�11 (�0)

�g1(�0)# ;
and

D�
� (g) (�) = D

�
F0 (g) (�) � s0 (�)�D

�
F1 (g) (�) � s1 (�) ;

where q1 = P (Z = 0), and sd (�) = 1

fd(F�1
d (�))

is the sparsity. f10 (y0) and f
1
1 (y1) are estimated by the

sample analog of

E[Lb(Y�y0)(1�D)jZ=1]�E[Lb(Y�y0)(1�D)jZ=0]
p1�p2 = E[Lb(Y�y0)jZ=1;D=0](1�p2)�E[Lb(Y�y0)jZ=0;D=0](1�p1)

p1�p2
t f10(y0)(1�p2)�f00(y0)(1�p1)

p1�p2 ;

23Note that FY1jA(�) and FY0jN (�) are automatically monotone in �nite samples.
24��(�) is generally negative especially for � < 0:5. This matches the result that �� < 0 although �� 6=

R
��(�)d� .
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and
E[Lb(Y�y1)DjZ=1]�E[Lb(Y�y1)DjZ=0]

p2�p1 = E[Lb(Y�y1)jZ=1;D=1]p2�E[Lb(Y�y1)jZ=0;D=1]p1
p2�p1

t f11(y1)p2�f01(y1)p1
p2�p1 ;

respectively, and f20 (y0) and f
0
1 (y1) are estimated by the sample analog of

E [Lb(Y � y0) (1�D) jZ = 1]
1� p2

= E [Lb(Y � y0)jZ = 1; D = 0] t f10(y0)

and
E [Lb(Y � y1)DjZ = 0]

p1
= E [Lb(Y � y1)jZ = 0; D = 1] t f01(y1);

respectively, where Lb(�) = 1
bL
� �
b

�
for a kernel function L (�) and a bandwidth b, and fzd(�) is the conditional

density of Y given Z = z and D = d. We use the standard normal kernel and select b based on Botev et al.

(2010). sd (�) is estimated based on the di¤erence quotient, as discussed by Siddiqui (1960) and Hendricks

and Koenker (1992):
Q�d(� + bd (�))�Q�d(� � bd (�))

2bd (�)
;

whereQ�d(�) = F
��1
d (�) is consistent toQd(�) under Assumption RS, bd (�) = n�1=5d

h
4:5�4

�
��1(�)

�
=
��
2��1(�)

�2
+ 1
�i1=5

depends on d and � and is based on Bo�nger (1975) with nd =
Pn

i=1 1(Di = d).
25 Figure 10 shows supD�

Fd
(�)

and supD�
� (�) for � 2 [0:12; 0:95]. From this �gure, we can see a few facts: (i) supD�

F1
> supD�

F0
for all

� especially when � is small. This matches the result in the IVE case - supD�
1 > supD�

0 . (ii) supD
�
� (�)

is large especially when � is large. This is consistent with the fact that the bounds for �(�) is wide. The

wiggles of supD�
� (�) are inherited from the sparsity sd (�). Compared with supD�

�, supD
�
� (�) tends to be

much larger because sd (�) includes the scale information of Y . If we multiply supD�
� by the sample mean

of Y (Y = 11560; 42), then they are of similar scale.

We next consider the LSE. From �1 =
E[DY ]
E[D] and �0 =

E[(1�D)Y ]
1�E[D] , we have �1 = 11352:55 2 [I1; I1],

�0 = 11616:17 2 [I0; I0] and � = �263:62 2 [I�; I�], where the bounds are stated in the analysis for the
IVE, j�1j > j��1j, j�0j < j��0j and

����� < j��j. For the LSA,
supD1 = 2:53 > supD

�
1 , supD0 = 0:48 < supD

�
0 and supD� = 2:89 > supD

�
�,

and supD1 > supD0 as in the IVE and IV-QRE case.

We �nally discuss the QRE. Note that F 1(y1) =
E[D�1(Y�y1)]

E[D] and F 0 (y0) =
E[(1�D)�1(Y�y0)]

1�E[D] ; we plot

F d(yd) also in Figure 8 for comparison, where F d(yd) is automatically monotone. Di¤erent from F �1 and F
�
0 ,

F 1 and F 0 are much closer to each other. Qd(�) and �(�) are plotted in Figure 9 for comparison; it turns

out that Qd(�) 2 [Id(�); Id(�)], �(�) 2
�
I�(�); I�(�)

�
and �(�) is much smaller than �� (�) in absolute

value for � 2 [0:12; 0:95]. For the LSA, as mentioned at the end of Section 6, supDFd (�) = supDd for any

� 2 [0:12; 0:95] and are plotted in the left panel of Figure 10; supD� (�) is plotted in the right panel of

Figure 10. In the calculation of supD� (�),

D�

�
g; g0

�
(�) = DF0

�
g; g0

�
(�) � s0 (�)�DF1

�
g0
�
(�) � s1 (�) ;

where sd (�) is similarly estimated as in the LSA for the IV-QRE but replacing Q�d (�) by Qd (�) = F
�1
d (�).

From Figure 10, when � is large, supD� (�) and supD�
� (�) are comparable, but when � is small or medium,

25An alternative bandwidth in Hall and Sheather (1988) is designed for con�dence interval construction for quantiles, rather
than optimizing the MSE of the density estimated by the di¤erence quotient as in Bo�nger (1975), so is not suitable here.
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Figure 10: supD�
Fd
(�), supDFd (�), supD

�
� (�) and supD� (�) for � 2 [0:12; 0:95]

there are indeed some visible di¤erences between them. supD� (�) is smoother in � than supD�
� (�) because

sd (�) in supD� (�) is estimated based on Qd(�) which is smoother than Q
�
d(�) from Figure 9.

We conclude this section by one further comment on the analyses above. Neither of the four estimators

contradicts the partial identi�cation analysis, so it seems that the sharp bounds are too wide to be informative

in this application. As an alternative, the LSA seems more informative by providing some explicit measure

of sensitivity.

8 Conclusion

In this paper, we analyze the IVE, IV-QRE, LSE and QRE, in the framework of HV, i.e., we analyze four

treatment e¤ects estimators under misspeci�cation. We derive the pseudo-true values, conduct the LSA,

and develop sharp bounds for the QTE which are parallel to the bounds in Heckman and Vytlacil (2001b).

We concentrate on the identi�cation issue in this paper. This can be justi�ed by Varian (2014), "In

this period of �big data,� it seems strange to focus on sampling uncertainty, which tends to be small with

large datasets, while completely ignoring model uncertainty, which may be quite large." Nevertheless, for

the size of most treatment datasets, inferences may still be important. There has already been some relevant

literature. For example, Heckman et al. (2010) derive the asymptotic distribution of the sample analog of

��J , where J(Z) is a general instrument and is not estimated in the �rst step; Yu (2016b) develops the weak

limit of an estimator based on the representation in Theorem 2 rather than the original moment conditions,

where Z is discrete and the instrument p(X;Z) is estimated in the �rst step. Another limitation of this

paper is to maintain the monotonicity assumption throughout our analysis. This assumption promises a

neat analysis although the consistency of the IVE and IV-QRE does not require such a restriction (as long

as the essential heterogeneity is excluded); we will relax this assumption and conduct a parallel analysis in

a companion paper Yu (2016a).
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Supplementary Material S.1

Proof of Theorem 1. The moment conditions for the IVE are
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�
1(�)juD)duD +

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p)Z

p

�Z p

0

FY1jUD (Q
�
1(�)juD)duD +

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p)

1CCA =

 
�

�E[p(Z)]

!

or 0BB@
Z �Z p

0

FY1jUD (Q
�
1(�)juD)duD +

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p)Z

p
E[p(Z)]

�Z p

0

FY1jUD (Q
�
1(�)juD)duD +

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p)

1CCA =

 
�

�

!
:

where Q�1(�) = Q
�
0(�) + �

�(�). This impliesZ
p

�
p

E [p(Z)]
� 1
��

1

p

Z p

0

FY1jUD (Q
�
1(�)juD)duD

�
dFp(Z)(p)

=

Z
(1� p)

�
1� p

E [p(Z)]

��
1

1� p

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p):

Deviding both sides by
Z
p
�

p
E[p(Z)] � 1

�
dFp(Z)(p) =

V ar(p(Z))
E[p(Z)] > 0, we have

eF1 (Q�1(�)) �
Z
p
p� E [p(Z)]
V ar(p(Z))

�
1

p

Z p

0

FY1jUD (Q
�
1(�)juD)duD

�
dFp(Z)(p)

=

Z
(1� p)

�
E [p(Z)]� p
V ar(p(Z))

��
1

1� p

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p) � eF0 (Q�0(�)) ;

where
Z
pp�E[p(Z)]V ar(p(Z))dFp(Z)(p) =

Z
(1� p)

�
E[p(Z)]�p
V ar(p(Z))

�
dFp(Z)(p) = 1,

Z
p
p� E [p(Z)]
V ar(p(Z))

�
1

p

Z p

0

FY1jUD (Q
�
1(�)juD)duD

�
dFp(Z)(p)

=

Z
FY1jUD (Q

�
1(�)juD)

Z 1

uD

p� E [p(Z)]
V ar(p(Z))

dFp(Z)(p)duD =

Z
FY1jUD (Q

�
1(�)juD)h1p(Z) (uD) duD;

6



and Z
(1� p)

�
E [p(Z)]� p
V ar(p(Z))

��
1

1� p

Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p)

=

Z
FY0jUD (Q

�
0(�)juD)

Z uD

0

E [p(Z)]� p
V ar(p(Z))

dFp(Z)(p)duD =

Z
FY0jUD (Q

�
0(�)juD)h0p(Z) (uD) duD

with

h1p(Z) (uD) =

Z 1

uD

p� E [p(Z)]
V ar(p(Z))

dFp(Z)(p) and h
0
p(Z) (uD) =

Z uD

0

E [p(Z)]� p
V ar(p(Z))

dFp(Z)(p):

Note that

h1p(Z) (uD)� h0p(Z) (uD) = 0;

and they are exactly the same as h(uD) in Theorem 1.

From eF1 (Q�1(�)) = eF0 (Q�0(�)), Q�0(�) = eF�10 eF1 (Q�1(�)). Substituting in Z �Z p

0

FY1jUD (Q
�
1(�)juD)duD+Z 1

p

FY0jUD (Q
�
0(�)juD)duD

�
dFp(Z)(p) = � , we have

F �1 (Q
�
1(�)) �

Z �Z p

0

FY1jUD (Q
�
1(�)juD)duD +

Z 1

p

FY0jUD (
eF�10 eF1 (Q�1(�)) juD)duD� dFp(Z)(p)

=

Z p

0

FY1jUD (Q
�
1(�)juD)duD +

Z p

p

"
FY1jUD (Q

�
1(�)juD)(1� Fp(Z)(uD))

+FY0jUD (
eF�10 eF1 (Q�1(�)) juD)Fp(Z)(uD)

#
duD

+

Z 1

p

FY0jUD (
eF�10 eF1 (Q�1(�)) juD)duD

= � ;

where the second equality is from Fubini�s theorem. Since this is valid for any � , the IV-QRE is estimating

F �1 (y1) by the formula stated in the theorem. Similarly, we can prove the result for F
�
0 (y0).

Proof of Proposition 7. First consider F �1 . The key is to study the path derivative of FY0jUD ( eF�10 eF1 (y1) juD)
along the path F ��. It is better to use FU1jUD as a benchmark and express F

�
U0jUD = FU1jUD�F

�. Speci�cally,

lim
�!0

F�Y0jUD (
eF��10

eF1 (y1) juD)� FY1jUD (y1juD)
�

= lim
�!0

F�U0jUD

�
F0

� eF��10
eF1 (y1)� juD�� FU1jUD (F1(y1)juD)

�

= lim
�!0

F�U0jUD

�
F0

� eF��10
eF1 (y1)� juD�� FU1jUD �F0 � eF��10

eF1 (y1)� juD�
+FU1jUD

�
F0

� eF��10
eF1 (y1)� juD�� FU1jUD �F0 � eF�10 eF1 (y1)� juD�

�

= �g(F1 (y1) juD) + fU1jUD (F1 (y1) juD)
f0
�
F�10 F1 (y1)

�
ef0 �F�10 F1 (y1)

� Z p

p

g(F1 (y1) juD)h (uD) duD

=
fY0jUD

�
F�10 (F1 (y1)) juD

�
ef0 �F�10 F1 (y1)

� Z p

p

g(F1 (y1) juD)h (uD) duD � g(F1 (y1) juD)

where F�Y0jUD (�juD) = F�U0jUD (F0(�)juD), eF�0 (�) = R p
p
F�Y0jUD (�juD)h (uD) duD, fU1jUD (�juD) is the pdf of

FU1jUD (�juD), fY1jUD (�juD) = fU1jUD (F1 (�) juD)�f1(�) is the pdf of FY1jUD (�juD), fd(�) =
R 1
0
fYdjUD (�juD) duD
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is the pdf of Fd(�), ef0 (�) = R pp fY0jUD (�juD)h (uD) duD is the pdf of eF0(�), the second to last equality is from
Assumption LF, and the last equality is from

fU1jUD (F1 (y1) juD) = fU0jUD (F1 (y1) juD) = fU0jUD
�
F0(F

�1
0 (F1 (y1)))juD

�
=
fY0jUD

�
F�10 (F1 (y1)) juD

�
f0
�
F�10 (F1 (y1))

�
as � = 0. As a result,

lim
�!0

F �1 (y1;�)� F1(y1)
�

=

Z p

p

"
fY0jUD

�
F�10 (F1 (y1)) juD

�
ef0 �F�10 F1 (y1)

� Z p

p

g(F1 (y1) juD)h (uD) duD � g(F1 (y1) juD)
#
Fp(Z)(uD)duD

+

Z 1

p

"
fY0jUD

�
F�10 (F1 (y1)) juD

�
ef0 �F�10 F1 (y1)

� Z p

p

g(F1 (y1) juD)h (uD) duD � g(F1 (y1) juD)
#
duD

which is the formula in the proposition.

Next consider F �0 . The key is to study the path derivative of FY1jUD ( eF�11 eF0 (y0) juD) along the path F ��.
It is better to use FU0jUD as a benchmark this time and express F

�
U1jUD = FU0jUD + F

�. Speci�cally,

lim
�!0

F�Y1jUD (
eF��11

eF0 (y0) juD)� FY0jUD (y0juD)
�

= lim
�!0

F�U1jUD (F1

� eF��11
eF0 (y0)� juD)� FY0jUD (y0juD)

�

= lim
�!0

F�U1jUD (F1

� eF��11
eF0 (y0)� juD)� FU0jUD (F1 � eF��11

eF0 (y0)� juD)
+FU0jUD (F1

� eF��11
eF0 (y0)� juD)� FU0jUD (F1 � eF�11 eF0 (y0)� juD)

�

= g(F0 (y0) juD)� fU0jUD (F0 (y0) juD)
f1
�
F�11 F0 (y0)

�
ef1 �F�11 F0 (y0)

� Z p

p

g(F0 (y0) juD)h (uD) duD

= g(F0 (y0) juD)�
fY1jUD

�
F�11 (F0 (y0)) juD

�
ef1 �F�11 F0 (y0)

� Z p

p

g(F0 (y0) juD)h (uD) duD;

where F�Y1jUD (�juD) = F�U1jUD (F1(�)juD), eF�1 (�) = R p
p
F�Y1jUD (�juD)h (uD) duD, fU0jUD (�juD) is the pdf of

FU0jUD (�juD), fY0jUD (�juD) = fU0jUD (F0 (�) juD) f0(�) is the pdf of FY0jUD (�juD), fd(�) =
R 1
0
fYdjUD (�juD) duD

is the pdf of Fd(�), ef1 (�) = R pp fY1jUD (�juD)h (uD) duD is the pdf of eF1(�), and the last equality is from
fU0jUD (F0 (y0) juD) = fU1jUD (F0 (y0) juD) = fU1jUD

�
F1(F

�1
1 (F0 (y0)))juD

�
=
fY1jUD

�
F�11 (F0 (y0)) juD

�
f1
�
F�11 (F0 (y0))

�

8



as � = 0. As a result,

lim
�!0

F �0 (y0;�)� F0(y0)
�

=

Z p

0

"
g(F0 (y0) juD)�

fY1jUD
�
F�11 (F0 (y0)) juD

�
ef1 �F�11 F0 (y0)

� Z p

p

g(F0 (y0) juD)h (uD) duD

#
duD

+

Z p

p

"
g(F0 (y0) juD)�

fY1jUD
�
F�11 (F0 (y0)) juD

�
ef1 �F�11 F0 (y0)

� Z p

p

g(F0 (y0) juD)h (uD) duD

#
(1� Fp(Z)(uD))duD;

which is the formula in the proposition.

Finally consider �� (�). Since �� (� ;�) = F ��11 (� ;�) � F ��10 (� ;�), the result in the proposition is

straightforward by the relationship between the derivatives of the cdf and the quantile.

Proof of Proposition 8. The moment conditions for the IV-QRE when J(Z) is used as the instrument

are

E

" 
1

J(Z)

!
(� � 1(Y � Q�J0(�) +D ���J(�)))

#
= 0;

which implies0BB@
Z �Z p

0

FY1jUD (Q
�
J1(�)juD)duD +

Z 1

p

FY0jUD (Q
�
J0(�)juD)duD

�
dFp(Z)(p)Z

j
E[J(Z)]

�Z p

0

FY1jUD (Q
�
J1(�)juD)duD +

Z 1

p

FY0jUD (Q
�
J0(�)juD)duD

�
dFp(Z);J(Z)(p; j)

1CCA =

 
�

�

!
:

So Z
p

�
j

E [J(Z)]
� 1
��

1

p

Z p

0

FY1jUD (Q
�
J1(�)juD)duD

�
dFp(Z);J(Z)(p; j)

=

Z
(1� p)

�
1� j

E [J(Z)]

��
1

1� p

Z 1

p

FY0jUD (Q
�
J0(�)juD)duD

�
dFp(Z);J(Z)(p; j):

Deviding both sides by
Z
p
�

j
E[J(Z)] � 1

�
dFp(Z);J(Z)(p; j) =

Cov(p(Z);J(Z))
E[J(Z)] , we have

eFJ1 (Q�J1(�)) �
Z
p

j � E [J(Z)]
Cov (J(Z); p(Z))

�
1

p

Z p

0

FY1jUD (Q
�
J1(�)juD)duD

�
dFp(Z);J(Z)(p; j)

=

Z
(1� p)

�
E [J(Z)]� j

Cov (J(Z); p(Z))

��
1

1� p

Z 1

p

FY0jUD (Q
�
J0(�)juD)duD

�
dFp(Z);J(Z)(p; j) � eFJ0 (Q�J0(�)) ;

By similar arguments as in the proof of Theorem 2, we can show the results in the proposition with

eFJ1 (y1) �
Z

j � E [J(Z)]
Cov (J(Z); p(Z))

�Z p

0

FY1jUD (y1juD)duD
�
dFp(Z);J(Z)(p; j)

=

Z
FY1jUD (y1juD)hJ (uD) duD;

eFJ0 (y0) �
Z �

E [J(Z)]� j
Cov (J(Z); p(Z))

��Z 1

p

FY0jUD (Q
�
J0(�)juD)duD

�
dFp(Z);J(Z)(p; j)

=

Z
FY0jUD (y1juD)hJ (uD) duD;
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where

hJ (uD) =

Z 1

�1

j � E [J(Z)]
Cov (J(Z); p(Z))

Z 1

uD

dFp(Z)jJ(Z)(pjj)dFJ(Z)(j)

=

Z 1

uD

Z 1

�1

j � E [J(Z)]
Cov (J(Z); p(Z))

dFJ(Z)jp(Z)(jjp)dFp(Z)(p)

=

Z 1

uD

E [J(Z)jp(Z) = p]� E [J(Z)]
Cov (J(Z); p(Z))

dFp(Z)(p):

Proof of Theorem 3. From the discussion in Section 4.2,
Z p

0

FY1jUD (yjuD)duD and
Z 1

p

FY0jUD (yjuD)duD

can be identi�ed, but the distribution of (D;Y; Z) contains no information on
Z 1

p

FY1jUD (yjuD)duD andZ p

0

FY0jUD (yjuD)duD. Nevertheless, note that

P (Y � yjp(Z) = p;D = 1) p � P (Y1 � y) =
Z p

0

FY1jUD (yjuD)duD +
Z 1

p

FY1jUD (yjuD)duD (17)

� P (Y � yjp(Z) = p;D = 1) p+ (1� p);

and

P
�
Y � yjp(Z) = p;D = 0

� �
1� p

�
� P (Y0 � y) =

Z 1

p

FY1jUD (yjuD)duD +
Z p

0

FY0jUD (yjuD)duD

� P
�
Y � yjp(Z) = p;D = 0

� �
1� p

�
+ p:

We concentrate on bounding Q1(�) since the results for Q0(�) can be similarly derived. We divide the proof

into �ve steps. The �rst four steps are similar to the proof of Proposition 2 in Manski (1994).

Step 1: I1(�) is an upper bound for Q1(�).

By (17),

P (Y � yjp(Z) = p;D = 1) p � � =) P (Y1 � y) � � : (18)

The premise of (18) is empty if that p < � . Suppose that p � � . Then the de�nition of I1(�) states that

I1(�) � min
�
t : P (Y � tjp(Z) = p;D = 1) � �

p

�
:

It follows that P (Y1 � I1(�)) � � . Hence Q1(�) � I1(�).
Step 2: I1(�) is a lower bound for Q1(�).

By (17),

P (Y � yjp(Z) = p;D = 1) p+ (1� p) < � =) P (Y1 � y) < �;

which can be rewritten as

P (Y � yjp(Z) = p;D = 1) < 1� 1� �
p

=) P (Y1 � y) < �: (19)
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The premise of (19) is empty if p � 1� � . Suppose that p > 1� � . Then the de�nition of I1(�) states that

I1(�) � min
�
t : P (Y � tjp(Z) = p;D = 1) � 1� 1� �

p

�
:

It follows that, for all � > 0, P (Y1 � I1(�)� �) < � . Hence Q1(�) � I1(�).
Step 3: I1(�) is the least upper bound for Q1(�).

First let p � � . For any � > 0,

P
�
Y1 � I1(�)� �

�
= P

�
Y � I1(�)� �jp(Z) = p;D = 1

�
p+

Z 1

p

FY1jUD (I1(�)� �juD)duD:

Suppose FY1jUD (I1(�)� �juD) = 0 for uD 2 (p; 1], as is possible in the absence of other information. Then
the de�nition of I1(�) implies that

P
�
Y1 � I1(�)� �

�
= P

�
Y � I1(�)� �jp(Z) = p;D = 1

�
p < �:

Hence Q1(�) > I1(�)� �. Now let p < � . For any t < y1,

P (Y1 � t) = P (Y � tjp(Z) = p;D = 1) p+

Z 1

p

FY1jUD (tjuD)duD: (20)

Suppose that FY1jUD (tjuD) = 0 for uD 2 (p; 1]. Then

P (Y1 � t) = P (Y � tjp(Z) = p;D = 1) p < �:

Hence Q1(�) > t.

Step 4: I1(�) is the greatest lower bound for Q1(�).

First let p > 1� � . For any � > 0,

P (Y1 � I1(�) + �) = P (Y � I1(�) + �jp(Z) = p;D = 1) p+

Z 1

p

FY1jUD (I1(�) + �juD)duD:

Suppose that FY1jUD (I1(�) + �juD) = 1 for uD 2 (p; 1], as is possible in the absence of other information.
Then the de�nition of I1(�) implies that

P (Y1 � I1(�) + �) = P (Y � I1(�) + �jp(Z) = p;D = 1) p+ (1� p) � � :

Hence Q1(�) � I1(�)+�. Now, let p � 1� � . Let t > y1 and suppose that FY1jUD (tjuD) = 1 for uD 2 (p; 1].
Then by (20),

P (Y1 � t) = P (Y � tjp(Z) = p;D = 1) p+ (1� p) � � :

Hence Q1(�) � t.
Step 5: I1(�) = I1(�) if p = 1; p = 1 if I1(�) = I1(�) when Y j (p(Z) = p;D = 1) is continuously distributed

with a positive density on (y
1
; y1).

Suppose p = 1; then I1(�) = QY jp(Z);D(� j1; 1) = I1(�).
Fix � 2 (0; 1=2]. When 0 � p < � , I1(�) = y

1
< y1 = I1(�). When 1 > p > 1 � � , I1(�) =

QY jp(Z);D

�
1� 1��

p

��� p; 1� < QY jp(Z);D � �p ��� p; 1� = I1(�). When 1�� � p � � , I1(�) = y1 < QY jp(Z);D � �p ��� p; 1�.
So when � � 1=2, Q1 (�) cannot be point identi�ed unless p = 1. Similarly, when 1 > � > 1=2, Q1 (�) cannot
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be point identi�ed unless p = 1.

Proof of Theorem 4. The moment conditions for (�1; �0) are

E

" 
1

D

!�
Y � �0 �D ��

�#
= 0;

where � = �1 � �0, i.e., 
�1
�0

!
=

0@ E
h
DY
E[D]

i
E
h
(1�D)Y
E[1�D]

i 1A

=

0BBB@
1

E[D]

Z p

p

�Z p

0

E [Y1jUD = uD] duD
�
dFp(Z)(p)

1
E[1�D]

Z p

p

�Z 1

p

E [Y0jUD = uD] duD
�
dFp(Z)(p)

1CCCA

=

0BBB@
Z p

p

p
E[D]

�
1
p

Z p

0

E [Y1jUD = uD] duD
�
dFp(Z)(p)Z p

p

1�p
E[1�D]

�
1
1�p

Z 1

p

E [Y0jUD = uD] duD
�
dFp(Z)(p)

1CCCA

=

0BBBB@
1

E[D]

"Z p

0

E [Y1jUD = uD]
Z p

p

dFp(Z)(p)duD +
R p
p
E [Y1jUD = uD]

Z p

uD

dFp(Z)(p)duD

#
1

E[1�D]

"R p
p
E [Y0jUD = uD]

Z uD

p

dFp(Z)(p)duD +

Z 1

p

E [Y0jUD = uD]
Z p

p

dFp(Z)(p)duD

#
1CCCCA

=

0BB@
1

E[p(Z)]

�Z p

0

E [Y1jUD = uD] duD +
R p
p
E [Y1jUD = uD]

�
1� Fp(Z)(uD)

�
duD

�
1

E[1�p(Z)]

�R p
p
E [Y0jUD = uD]Fp(Z)(uD) +

Z 1

p

E [Y0jUD = uD] duD
�

1CCA :
Given �1 and �0, � = �1 � �0.
To derive the weight for � in HV, note that

��� =

Z 1

0

E [U1 � U0jUD = uD]
1� Fp(Z)(uD)
E [p(Z)]

duD +

Z 1

0

E [U0jUD = uD]
�
1� Fp(Z)(uD)
E [p(Z)]

�
Fp(Z)(uD)

E [1� p(Z)]

�
duD

=

Z 1

0

MTE(uD)
E [U1jUD = uD]!1(uD)� E [U0jUD = uD]!0(uD)

MTE(uD)
duD:

where

!1(uD) =
1� Fp(Z)(uD)
E [p(Z)]

; !0(uD) =
Fp(Z)(uD)

E [1� p(Z)] :

Since� =
R 1
0
MTE(uD)duD,� =

R 1
0
MTE(uD)!(uD)duD with !(uD) = 1+

E[U1jUD=uD]!1(uD)�E[U0jUD=uD]!0(uD)
MTE(uD)

.

Proof of Theorem 5. The moment conditions to identify
�
Q0(�);�(�)

�
are

E

" 
1

D

!�
� � 1(Y � Q0(�) +D ��(�))

�#
= 0;

12



i.e.,  
�

�E[D]

!
=

 
P
�
Y � Q0(�) +D ��(�)

�
E[D � 1(Y � Q0(�) +D ��(�))]

!
:

We calculate these moment conditions in our framework. First,

P
�
Y � Q0(�) +D ��(�)

�
=

Z
P
�
Y � Q0(�) +D ��(�)jp(Z) = p

�
dFp(Z)(p);

where
P
�
Y � Q0(�) +D ��(�)jp(Z) = p

�
= P

�
Y � Q0(�) +D ��(�)jp(Z) = p;D = 1

�
P (D = 1jp(Z) = p)

+ P
�
Y � Q0(�) +D ��(�)jp(Z) = p;D = 0

�
P (D = 0jp(Z) = p)

= P
�
Y1 � Q1(�)jUD � p

�
p+ P

�
Y0 � Q0(�)jUD > p

�
(1� p)

=

Z p

0

FY1jUD (Q1(�)juD)duD +
Z 1

p

FY0jUD (Q0(�)juD)duD

with Q1(�) = Q0(�) + �(�). Second,

E[D � 1(Y � Q0(�) +D ��(�))] =
Z
E[D � 1(Y � Q0(�) +D ��(�))jp(Z) = p]dFp(Z)(p);

where
E[D � 1(Y � Q0(�) +D ��(�))jp(Z) = p]

= E[D � 1(Y � Q0(�) +D ��(�))jp(Z) = p;D = 1]P (D = 1jp(Z) = p)
= P

�
Y1 � Q1(�)jUD � p

�
p

=

Z p

0

FY1jUD (Q1(�)juD)duD

In summary,

0B@ �

Z
(1� p) dFp(Z)(p)

�

Z
pdFp(Z)(p)

1CA =

0BB@
Z �Z 1

p

FY0jUD (Q0(�)juD)duD
�
dFp(Z)(p)Z �Z p

0

FY1jUD (Q1(�)juD)duD
�
dFp(Z)(p)

1CCA ;
or

F 0
�
Q0(�)

�
�

Z p

p

�
1� p

1� E [p(Z)]
1

1� p

Z 1

p

FY0jUD (Q0(�)juD)duD
�
dFp(Z)(p)

=

Z p

p

FY0jUD (Q0(�)juD)
Fp(Z)(uD)

E [1� p(Z)]duD +
Z 1

p

FY0jUD (Q0(�)juD)
E [1� p(Z)] duD = � ;

F 1
�
Q1(�)

�
�

Z p

p

�
p

E [p(Z)]

1

p

Z p

0

FY1jUD (Q1(�)juD)duD
�
dFp(Z)(p)

=

Z p

0

FY1jUD (Q1(�)juD)
E [p(Z)]

duD +

Z p

p

FY1jUD (Q1(�)juD)
1� Fp(Z)(uD)
E [p(Z)]

duD = � ;

where the second equalities use Fubini�s theorem. Since the formula for F d
�
Qd(�)

�
is valid for any � , the

QRE is estimating F d(yd) by the formula stated in the theorem. Given F d(yd), the formula for �(�) is

followed.
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Supplementary Material S.2

S.2.1. Alternative Formulas for ��d
Di¤erent parts of ��d in Theorem 1 can be re-expressed as

Z p

0

E [Y1jUD = uD] duD = pE
�
Y jD = 1; p(Z) = p

�
;Z 1

p

E [Y0jUD = uD] duD = (1� p)E [Y jD = 0; p(Z) = p] ;

and Z p

p

E [Y1jUD = uD]h1(uD)duD

=

Z p

p

E
�
p(Z)2

�
� pE [p(Z)] + (p� E [p(Z)])

V ar (p(Z))

�
pE [Y jD = 1; p(Z) = p]� pE

�
Y jD = 1; p(Z) = p

��
dFp(Z)(p)Z p

p

E [Y0jUD = uD] (1� h1(uD))duD

=

Z p

p

E
�
p(Z)2

�
� pE [p(Z)] + (p� E [p(Z)])

V ar (p(Z))
[(1� p)E [Y jD = 0; p(Z) = p]� (1� p)E [Y jD = 0; p(Z) = p]] dFp(Z)(p)Z p

p

E [Y1jUD = uD]h0(uD)duD

=

Z p

p

E
�
p(Z)2

�
� pE [p(Z)]

V ar (p(Z))

�
pE [Y jD = 1; p(Z) = p]� pE

�
Y jD = 1; p(Z) = p

��
dFp(Z)(p)Z p

p

E [Y0jUD = uD] (1� h0(uD))duD

=

Z p

p

E
�
p(Z)2

�
� pE [p(Z)]

V ar (p(Z))
[(1� p)E [Y jD = 0; p(Z) = p]� (1� p)E [Y jD = 0; p(Z) = p]] dFp(Z)(p):

Finally, Z p

p

MTE(uD)h(uD)duD

=

Z p

p

E [Y1jUD = uD]h(uD)duD �
Z p

p

E [Y0jUD = uD]h(uD)duD

=

Z p

p

p� E [D]
V ar(p(Z))

�
pE [Y jD = 1; p(Z) = p]� pE

�
Y jD = 1; p(Z) = p

��
dFp(Z)(p)

�
Z p

p

p� E [D]
V ar(p(Z))

[(1� p)E [Y jD = 0; p(Z) = p]� (1� p)E [Y jD = 0; p(Z) = p]] dFp(Z)(p);

where pE [Y jD = 1; p(Z) = p] can be rewritten as E [Y Djp(Z) = p] and (1� p)E [Y jD = 0; p(Z) = p] can

be rewritten as E [Y (1�D) jp(Z) = p].
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S.2.2. Alternative Formulas for F �d (yd)

Di¤erent parts of F �d (yd) in Theorem 2 can be re-expressed as

Z p

0

FY1jUD (y1juD)duD = pFY jD=1;p(Z)=p(y1);Z 1

p

FY0jUD (y0juD)duD = (1� p)FY jD=0;p(Z)=p(y0);

and

eF1 (y1) =

Z p

p

p� E [D]
V ar(p(Z))

h
pFY jD=1;p(Z)=p(y1)� pFY jD=1;p(Z)=p(y1)

i
dFp(Z)(p);

eF0 (y0) =

Z p

p

�
E [D]� p
V ar(p(Z))

��
(1� p)FY jD=0;p(Z)=p (y0)� (1� p)FY jD=0;p(Z)=p(y0)

�
dFp(Z)(p);Z p

p

FY1jUD (y1juD)(1� Fp(Z)(uD))duD

=

Z p

p

h
pFY jD=1;p(Z)=p(y1)� pFY jD=1;p(Z)=p(y1)

i
dFp(Z)(p);Z p

p

FY0jUD (y1juD)Fp(Z)(uD)duD

=

Z p

p

�
(1� p)FY jD=0;p(Z)=p (y0)� (1� p)FY jD=0;p(Z)=p(y0)

�
dFp(Z)(p);

where pFY jD=1;p(Z)=p(y1) can be rewritten as E [1 (Y � y1)Djp(Z) = p] and (1 � p)FY jD=0;p(Z)=p (y0) can
be rewritten as E [1 (Y � y0) (1�D) jp(Z) = p].
Note that the expressions for

R p
p
FY1jUD (y1juD)(1� Fp(Z)(uD))duD and

R p
p
FY0jUD (y1juD)Fp(Z)(uD)duD

can be extended to the formulas for the LSE and QRE.

S.2.3. Properties of hJd and hJ

First note that hJd and hJ are only functions of p(Z) and J(Z) and do not involve Y1 and Y0. For com-

pleteness, we restate the �rst three properties of hd and h for hJd and hJ .

Proposition 11 hJ1, hJ0 and hJ satisfy the following properties:

(i)
R p
p
hJ1(uD)duD = 1� p,

R 1
0
hJ1(uD)duD = 1;

(ii)
R p
p
hJ0(uD)duD = �p,

R 1
0
hJ0(uD)duD = 0;

(iii)
R p
p
hJ(uD)duD =

R 1
0
hJ(uD)duD = 1;

(iv) if E [J(Z)jp(Z) = p] is a continuous and strictly increasing or decreasing function of p, then when
uD < u

�
D1, hJ1(uD) is strictly increasing, and when uD > u

�
D1, hJ1(uD) is strictly decreasing, where

u�D1 2 [p; p] is de�ned by E [J(Z)jp(Z) = u�D1] =
E[J(Z)]�E[p(Z)J(Z)]

1�E[p(Z)] ;
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(v) if E [J(Z)jp(Z) = p] is a continuous and strictly increasing or decreasing function of p, when uD < u�D0,
hJ0(uD) is strictly decreasing, and when uD > u�D0, hJ0(uD) is strictly increasing, where u

�
D0 2 [p; p]

is de�ned by E [J(Z)jp(Z) = u�D0] =
E[p(Z)J(Z)]
E[p(Z)] ;

(vi) if E [J(Z)jp(Z) = p] is a continuous and strictly increasing or decreasing function of p, when uD < u�D,
hJ (uD) is strictly increasing, and when uD > u�D, hJ(uD) is strictly decreasing, where u

�
D 2 [p; p] is

de�ned by E [J(Z)jp(Z) = u�D] = E [J(Z)].

Proof. First,

Z p

p

hJ1(uD)duD =

Z p

p

1

Cov (J(Z); p(Z))

Z 1

uD

"
E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]

+ (E [J(Z)jp(Z) = p]� E [J(Z)])

#
dFp(Z)(p)duD

=
1

Cov (J(Z); p(Z))

Z p

p

"
E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]

+ (E [J(Z)jp(Z) = p]� E [J(Z)])

#Z p

p

duDdFp(Z)(p)

=
1

Cov (J(Z); p(Z))

Z p

p

"
E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]

+ (E [J(Z)jp(Z) = p]� E [J(Z)])

# �
p� p

�
dFp(Z)(p)

= 1� p;

where the second equality is from Fubini�s theorem. Similarly,Z p

p

hJ0(uD)duD =
1

Cov (J(Z); p(Z))

Z p

p

Z p

uD

[E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]] dFp(Z)(p)duD

=
1

Cov (J(Z); p(Z))

Z p

p

[E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]]
Z p

p

duDdFp(Z)(p)

=
1

Cov (J(Z); p(Z))

Z p

p

[E [p(Z)J(Z)]� E [J(Z)jp(Z) = p]E [p(Z)]]
�
p� p

�
dFp(Z)(p)

= �p:

So Z 1

0

hJ1(uD)duD =

Z p

0

hJ1(uD)duD +

Z p

p

hJ1(uD)duD +

Z 1

p

hJ1(uD)duD

= p+ 1� p+ 0 = 1;

and Z 1

0

hJ0(uD)duD =

Z p

0

hJ0(uD)duD +

Z p

p

hJ0(uD)duD +

Z 1

p

hJ0(uD)duD

= p� p+ 0 = 0;

which implies Z p

p

hJ(uD)duD =

Z 1

0

hJ(uD)duD =

Z 1

0

hJ1(uD)duD �
Z 1

0

hJ0(uD)duD = 1;

as shown in HV.
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For the last three properties, note that

h0J1(uD) = [E [J(Z)]� E [p(Z)J(Z)]� (1� E [p(Z)])E [J(Z)jp(Z) = uD]]
fp(Z)(uD)

Cov (J(Z); p(Z))
;

h0J0(uD) = [E [p(Z)]E [J(Z)jp(Z) = uD]� E [p(Z)J(Z)]]
fp(Z)(uD)

Cov (J(Z); p(Z))
;

h0J (uD) = [E [J(Z)]� E [J(Z)jp(Z) = uD]]
fp(Z)(uD)

Cov (J(Z); p(Z))
;

so the shape of hJd and hJ depends on the property of E [J(Z)jp(Z) = uD]. If j(uD) � E [J(Z)jp(Z) = uD]
is strictly increasing,

Cov (J(Z); p(Z)) =

Z p

p

p (E [J(Z)jp(Z) = p]� E [J(Z)]) dFp(Z)(p) > 0;

and similarly, Cov (J(Z); p(Z)) < 0 if E [J(Z)jp(Z) = uD] is strictly decreasing.
Consider the strictly increasing case only since the other case can be similarly analyzed. For h0J1(uD),

note that
E [J(Z)]� E [p(Z)J(Z)]

1� E [p(Z)] 2
�
j; j
�
;

where j = min
uD2[p;p]

j(uD), and j = max
uD2[p;p]

j(uD). So there exists a u�D1 2 [p; p] such that

j(u�D1) =
E [J(Z)]� E [p(Z)J(Z)]

1� E [p(Z)] ;

and when uD < u�D1, h
0
J1(uD) > 0 and uD > u

�
D1, h

0
J1(uD) < 0. For h

0
J0(uD), note that

E [p(Z)J(Z)]

E [p(Z)]
2
�
j; j
�
;

so there exists a u�D0 2 [p; p] such that

j(u�D0) =
E [p(Z)J(Z)]

E [p(Z)]
;

and when uD < u�D0, h
0
J0(uD) < 0 and uD > u�D0, h

0
J0(uD) > 0. For h

0
J (uD), note that E [J(Z)] 2

�
j; j
�
,

so there exists a u�D 2 [p; p] such that j(u�D) = E [J(Z)] and when uD < u�D, h
0
J(uD) > 0 and uD > u�D,

h0J(uD) < 0.

S.2.4. Unnecessity of p = 0 and p = 1 for Point Identi�cation of �(�)

The following example illustrates that p = 0 and p = 1 are not necessary for point identi�cation of �(�)

when Yd is binary. A similar example where the distribution of Yd is a mixture of continuous and discrete is

available upon request.

Example 10 Suppose Yd 2 f0; 1g. p1 � P (Y = 0jp(Z) = p;D = 1) 2 (0; 1) and p
0
� P (Y = 0jp(Z) =

17



Figure 11: p (p) and p1 (p0) Combination for Point Identi�cation of Q1(�) (Q0(�)): Red Area for Qd (�) = 1
and Blue Area for Qd (�) = 0

p;D = 0) 2 (0; 1). First check the bounds for Q1 (�):

I1(�) =

(
1

0;

if p > 1� � and 1� 1��
p > p1;

if p � 1� � or [p > 1� � and 1� 1��
p � p1];

I1(�) =

(
0;

1;

if p � � and �
p � p1;

if p < � or [p � � and �
p > p1]:

When max
n
1� � ; �p1

o
< p � 1��

1�p1
or �

p1
� p � 1 � � , I1(�) = I1(�) = 0; when 1��

1�p1
< p < � or

max
n
1��
1�p1

; �
o
< p < �

p1
, I1(�) = I1(�) = 1. Similarly, when 1 � 1��

1�p
0

� p < min
n
� ; 1� �

p
0

o
or � �

p � 1 � �
p
0

, I0(�) = I0(�) = 0; when 1 � � < p < 1 � 1��
1�p

0

or 1 � �
p
0

< p < min
n
1� � ; 1� 1��

1�p
0

o
,

I0(�) = I0(�) = 1. Figure 11 shows the combination of p (p) and p1 (p0) for point identi�cation of Q1(�)

(Q0(�)) at � = 0:1; 0:25; 0:5; 0:75; 0:9. Obviously, p = 0 and p = 1 are not necessary for point identi�cation

of �(�). Only if p1 = p
0
= � , p = 0 and p = 1 are necessary. Note also that p � min f� ; 1� �g and

p � max f� ; 1� �g for point identi�cation of �(�) for any p1, p0 2 (0; 1) as predicted in Yu (2016a).

S.2.5.
R
yddF

�
d (yd) 6= ��d Under Assumption RS

As shown in Section 4.1, E[U1 � U0jUD = uD] in the ATE case equals
R
[q1(u)� q0(u)] dFU jUD (ujuD) �R

[q1(u)� q0(u)] du in the QTE case under Assumption RS, and need not be zero. Under Assumption RS,
F �d (yd) = Fd(yd) so that

R
yddF

�
d (yd) =

R
yddFd(yd) = �d while �

�
d need not equal �d since E[U1�U0jUD =

uD] need not be zero.

18



We use the running example to illustrate this result. In this example with only the selection e¤ect,

q1(u) = 2��1(u); q0(u) = �
�1(u);

FU1jUD (ujuD) = FU0jUD (ujuD) = �
�
��1(u)� 0:7��1(uD)p

1� 0:72

�
;

that is, Assumption RS holds and
R
yddF

�
d (yd) = �d. On the other hand,

E[U1 � U0jUD = uD] =
Z
[q1(u)� q0(u)] dFU jUD (ujuD) = 0:7��1(uD) 6= 0:

In other words, there is essential heterogeneity in the ATE case. It is not hard to check that

��1 =

Z
fE [Y1jUD = uD]h1(uD) + E [Y0jUD = uD] (1� h1(uD))g duD

=

Z
f1:4uD(1 + 3uD)(1� uD) + 0:7uD [1� (1 + 3uD)(1� uD)]g duD

t 0:64 6= 0 = �1

and

��0 =

Z
fE [Y1jUD = uD]h0(uD) + E [Y0jUD = uD] (1� h0(uD))g duD

=

Z
f1:4uD(1� 3uD)(1� uD) + 0:7uD [1� (1� 3uD)(1� uD)]g duD

t 0:29 6= 0 = �0:

From this example, the IV-QRE can handle some cases that the IVE cannot handle. Of course, the

IVE can also handle some cases that the IV-QRE cannot handle. For example, in the running example, let

Y1 = V + 2U and Y0 = 2V + 0:4
0:7U ; then

FU1jUD (ujuD) = P
�
Y1 � F�11 (u)jV = ��1(uD)

�
= �

 p
7:8
2 ��1(u)� 1:2��1(uD)p

1� 0:72

!
;

FU0jUD (ujuD) = P
�
Y0 � F�10 (u)jV = ��1(uD)

�
= �

 
7
p
a
4 �

�1(u)� 4:2��1(uD)p
1� 0:72

!
:

where a = 28=5 + 16=49. Obviously, FU1jUD (ujuD) 6= FU0jUD (ujuD), so Assumption RS does not hold.
However,

E [U1jUD = uD] = Cov (Y1; V )uD = 2:4uD;

E [U0jUD = uD] = Cov (Y0; V )uD = 2:4uD;

i.e., E [U1 � U0jUD = uD] = 0. Certainly, it is not hard to �nd cases that both the IVE and IV-QRE can

handle, e.g., in the running example, let Y1 = 1 + U and Y0 = U .
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