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Abstract

This paper explores leadership within hierarchical organizations. For
each hierarchy, I consider a dynamic signaling game in which each player
observes only the actions of his direct superiors before choosing his action.
At the top of the hierarchy are the leaders, who learn the state from nature.
The hierarchy controls the flow of information and the timing of the game,
and determines the equilibrium output and welfare. I show that the welfare-
optimal hierarchy is the chain, because it maximizes the incentive of players
to “lead by example” for their subordinates. The chain remains optimal even
in the presence of verifiable or unverifiable costly information acquisition by
the leaders. Lastly, I characterize optimal hierarchies when the number of
layers or the number of leaders is limited. Applications to fund-raising are
also discussed.
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1 Introduction

This paper studies the role of leadership and information flow in the design of

organizations. I develop a model of public good provision in teams with asymmetric

information. Team members can engage in costly signaling of their information

through their choice of effort to invest in the joint project. Leadership positions

within the organization are distinguished by differential access to information: a

team member’s effort is observed only by her direct subordinates. The flow of

information is thus endogenous to the design of the organization, and becomes

the crucial channel through with the organizational design affects team output. I

characterize the optimal organizational design in this model, and show that the

optimal hierarchy provides important welfare gains over the standard team output

and other methods of addressing the classic problem of moral hazard in teams

(Holmstrom (1982)).

A central building block for my work is the idea of leading by example, intro-

duced in the seminal work of Hermalin (1998). Hermalin (1998) also starts from

the issue of free-riding in team production problems, and assumes that one team

member knows the true marginal return to effort. In the standard team model,

the informed member cannot credibly signal her information, thus it is useless.

Hermalin’s fundamental insight is that if the informed member can move first,

however, then she can “lead by example”: if she chooses her effort first and this is

observable to all other team members, then her investment in the project provides

a credible costly signal. Hermalin (1998) shows that such leading by example, by

exploiting this information channel, yields higher welfare in equilibrium than the

standard team production (even in the symmetric information case). Thus Herma-

lin (1998) identifies an important aspect of leadership in information transmission

and incentive provision that can mitigate free-riding in teams. This insight has

been at the heart of a sizable and growing literature on the economics of leadership

(for example, see Hermalin (2007), Komai, Stegeman and Hermalin (2007), Komai

and Stegeman (2010)).

An important limitation to the analysis in Hermalin (1998) is that the informa-

tion channels and organizational structure are essentially taken to be exogenous.

One team member is exogenously assumed to be informed about the true state,
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thus have “leadership potential.” The leader’s only choice is whether to move first,

thereby signaling to all of the other members simultaneously. Thus the organiza-

tional structure is exogenously given: a two-tier hierarchy with the leader at the

top and all other members on the second tier. If the signaling role of a leader is

important, however, then information flows should be an important component

in the endogenous design of organizations. For example, consider a three-person

team in which one member learns the true state. Hermalin’s (1998) results show

that team output increases if the informed member invests first and reveals her

investment to the other members, who then choose their investments simultane-

ously. Is this the optimal organizational design, however? Hermalin (1998) and

the substantial work that followed do not address this important question. For

example, is it better to have information flow through a “middle manager,” that

is, to have a three-tier hierarchy in which a single member observes the leader’s

investment, chooses his investment and then in turn reveals only his investment

to the third member? Or is it better to have two leaders, each of whom signals to

the third member?

To answer these questions, I start by illustrating the results in the simple case

of three workers. In this case, it is possible to give an exhaustive list of all of the

possible hierarchies. In a simplified version of the public good provision model

with quadratic disutility of effort, I show that the optimal hierarchy has three

tiers, with one leader on the top tier, one middle manager on the second tier, and

a terminal worker on the third tier. This results in two rounds of the “leading

by example” effect observed by Hermalin (1998). The middle manager “leads by

example” for the terminal worker, which results in higher effort from the middle

manager due to the need to provide credible signal. Because the middle manager

works harder, the leader has a larger incentive to invest more as well, again due

to the signaling effect. In particular, this three-tier chain hierarchy yields higher

output than the two-tier hierarchy assumed in Hermalin (1998). Similarly, the

chain dominates the inverted two-tier hierarchy with two leaders on the top tier.1

In either case, one round of signaling is wasted, leading to lower output than in

the chain.

1This result relies on an assumption on the beliefs of the terminal worker. See Section 2.3.
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The general model with any number of workers and general sharing rule and

disutility function is analyzed in sections 4 and 5. Here I distinguish between

simple hierarchies, in which every player who is not the leader has a unique direct

predecessor, and complicated hierarchies, in which at least one player has multiple

direct predecessors. In a simple hierarchy, the dynamic signaling game I define al-

ways has a unique separating equilibrium, but in a complicated hierarchy typically

there are multiple separating equilibria. Consequently, the analysis of complicated

hierarchies is more delicate.

For simple hierarchies, I show that similar intuition as in the three-person ex-

ample holds, and the chain is optimal in an arbitrarily large team. The optimality

of the chain follows from the observation that by transforming any hierarchy into

a chain, we obtain the maximal number of stages of signaling, as the set of fol-

lowers for each member is larger in the chain than in the original hierarchy. For

fixed shares, the chain gives every member the largest possible signaling incentive,

hence motivates the highest efforts. Therefore, the chain can replicate the same

welfare under any hierarchy but uses less total shares. Moreover, extra shares

always improve welfare when distributed optimally among the team. Combining

these results shows the optimality of the chain among simple hierarchies.

For complicated hierarchies, I focus on a particular equilibrium which shares

a similar characterization as the unique equilibrium with simple hierarchies. Here

I consider two operations on hierarchies: adding links and splitting. Adding links

means constructing a link, and hence an information channel, between two mem-

bers who were unconnected, while splitting means creating a new intermediate tier

consisting of a single member chosen from a tier with more than one member, and

adding the maximal number of links to this new tier. Interestingly, each operation

improves welfare after adjusting the shares optimally. The optimality of the chain

follows directly from the fact that any hierarchy can be transformed into a chain

through a sequence of these two operations.

I then extend the model to allow for endogenous information acquisition by

the leaders. If research effort is verifiable, then the optimal hierarchy is still the

chain because the chain generates the highest social return to information. Even if

research effort is not verifiable, the chain remains optimal because the leader’s in-

centive for information acquisition now depends monotonically on her equilibrium
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effort, which is higher in the chain than in any other hierarchy. Thus the leader

acquires more accurate information in equilibrium, even when research effort is

not verifiable.

A drawback to the chain is that for a large team, the hierarchy is very long, as

it requires as many tiers as team members. Thus I also consider a version of the

model with constraints on the height of the hierarchy, that is, in which hierarchies

are constrained to have fewer tiers than team members. In this case a chain is

not feasible. I show that the optimal simple hierarchy must have the maximal

number of middle managers, hence the smallest number of terminal workers. This

is achieved by assigning at most one follower to each middle manager. The maximal

number of middle managers exploits the maximal level of signaling incentives in

the team when height is limited.

While I use the language of leaders and followers throughout the paper, fol-

lowing Hermalin (1998) and subsequent work, the results developed here can be

applied to a wide variety of team production problems with asymmetric informa-

tion. In many applications, the informed players who move first in the optimal

team hierarchy need not literally be team “leaders” or CEOs; in many settings

it might be natural for more informed members to be lower-level workers more

familiar with the production technology or better able to collect information. In

such problems, these results show that the optimal arrangement of the team is a

chain originating with the informed member, with each member signaling via his

effort to a subsequent member.

As an application, I consider the problem of a charity trying to raise funds

from a pool of possible donors. I show that the charity can raise more money

by implementing a fund-raising campaign resembling a chain; that is, by placing

potential donors in a line and asking them to donate one after the other. In

particular, the charity should not reveal the entire donation history to future

donors.

Related Literature

This paper is related to two strands of literature, one focusing on the economics

of leadership, and the other focusing on determinants of organizational design.

4



As mentioned an important contribution to the literature of leadership is Her-

malin (1998), on which this paper is built. Many extensions of Hermalin’s model

have appeared. Komai and Stegeman (2010) study the rise of leaders endoge-

nously. Komai, Stegeman, and Hermalin (2007) consider team production with

binary action (participate or not). Hermalin (2008) extends the static model to

an infinitely repeated setting, thus allowing the leader to build a reputation. The

literature on leaders conveying information is surveyed in Hermalin (2007). As

noted, a limitation of these models is that they all assume an exogenous orga-

nizational structure. The main contribution of this paper is to endogenize the

organizational structure.

Many different aspects of hierarchies have been studied in previous work. Some

approaches emphasize moral hazard and loss of control, for example, Calvo and

Wellisz (1978, 1979), and Qian (1994). Others, following Radner (1993), study

optimal hierarchies for minimizing costs of information processing and commu-

nication, for example, Bolton and Dewatripont (1994), Prat (1997), van Zandt

(1999), Marschak and Reichelstein (1998). This paper identifies another role of

hierarchy through a different perspective, that of signaling channels. The dissemi-

nation of information along the hierarchy creates incentives for players as they try

to influence their followers’ beliefs, hence efforts.

This paper is also related to the increasingly growing literature on social learn-

ing (Bala and Goyal, 1998) and social networks (Jackson, 2008). The hierarchies

studied here are particular networks in which information is transmitted through

signaling along the directed links. In this model, cheap talk messages are not

credible. Instead, the information about the state is transmitted from one player

to his follower via his action, which connects this paper to the literature on “in-

formation cascades” and “herd behavior” (see, e.g., Banerjee 1992, Bikhchandani

et al., 1992). But there are many differences. First, followers in this paper have

no private signals. Also, the action and state are both continua, the action fully

reveals the state in equilibrium. Lastly, unlike that literature, one player’s payoff

here also depends on other players’ actions.
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2 Model with Three Workers

In this section, I provide basic intuition about how organizational structure affects

the incentives of players and team welfare using a simplified three-worker public

good production model. The general model with any fixed number of workers,

general sharing rule and disutility function is studied in the next section.

For an organization with three workers, there are only a few possible hierar-

chies: T structure (team structure), Λ structure (leading by example), C3 (se-

quential leading by example), and V structure (two leaders).2 For each hierarchy,

I define the game associated with it, characterize the unique separating equilib-

rium, and compute welfare in that equilibrium. I show the chain yields higher

welfare than leading by example, which in turn yields higher welfare than the

team structure. The analysis for the V structure is complicated by the fact that

the unique follower of two leaders may have different out-of-equilibrium beliefs to

support different equilibrium efforts from the leaders. Under a pessimistic belief

assumption for the follower, I show that there is a continuum of separating equi-

libria, but all such equilibria are bounded by two special equilibria, what I call the

U-equilibrium and L-equilibrium. The U-equilibrium does better than leading by

example, but still worse than the chain, while the L-equilibrium does as well as

the team structure. Hence, I give a complete picture of what we can achieve with

three workers.

Consider a team with N=3 identical workers producing a joint project. The

value of the project is v(x1, x2, x3) = θ(x1 + x2 + x3), where θ ∈ Θ = [0,∞)

is a stochastic productivity factor and xi ∈ R+ is the contribution of worker

i. The prior distribution of θ is F : [0,∞) → [0, 1]. I assume F has full sup-

port and a continuous and positive density function f . Furthermore, assume

each member gets 1/3 of the total output v and c(x) = 1
2
x2 is the disutility

of effort, which is the same for every worker. Then, worker i’s payoff πi is

πi(x1, x2, x3) = 1
3
v(x1, x2, x3) − c(xi) = 1

3
θ(x1 + x2 + x3) − 1

2
x2
i and aggregate

welfare is W (x1, x2, x3) =
∑3

i=1 πi(x1, x2, x3) =
∑3

i=1(θxi − 1
2
x2
i ). Note that the

output function v is additively separable in individual efforts. So, if state θ is

2There is another structure with two leaders, but one leader has no followers. See footnote 6
for discussion.
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common knowledge or all workers have the same belief θ about the state, worker i

has a dominant strategy to exert effort xNi = 1
3
θ. Welfare under the corresponding

equilibrium is WN(θ) = W (1
3
θ, 1

3
θ, 1

3
θ) = 5

6
θ2. The first-best effort is xFBi = θ and

the first-best welfare is W FB(θ) = W (θ, θ, θ) = 3
2
θ2. There is under-provision of ef-

fort due to standard free-riding in teams. In the first-best world, each worker must

receive 100% of the output on the margin, but in total we only have 100% to give

due to budget balance. The case with symmetric information can be graphically

represented by Figure 1. Every member’s position is symmetric in this structure,

and we call it the standard team structure.

•1 •2 •3

Figure 1: Standard Team Structure (T)

2.1 Leading by Example

To counteract the free-riding problem in teams, hidden information and leading by

example were introduced by Hermalin (1998). In that model, one worker, called

the “leader,” has superior information about θ and she moves first. All of the

other workers, who initially only know the prior distribution of the state, observe

her effort and choose their efforts simultaneously in the next stage.

•L
↙ ↘

•F1 •F2

Figure 2: Leading by Example (Λ)

Figure 2 shows the relationship between workers. L is the leader and F1 and

F2 are the two followers. An arrow from L to F1 means that F1 observes L’s effort.

We call this the Λ structure since it resembles the letter Λ. For the Λ structure,

we can define a signaling game as follows:

• Nature chooses θ ∈ Θ, which is unknown to all initially.
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• In period 1, the leader L learns θ and chooses xL.

• In period 2, both F1 and F2 observe xL and pick their efforts xF1, xF2 simul-

taneously.

• Payoffs are realized.

We are interested in separating equilibrium, in which the leader’s effort x̃L(θ)

is a monotonic function of the state θ, hence reveals the state to the followers. A

separating Perfect Bayesian Equilibrium (SPBE) of this signaling game is calcu-

lated in Hermalin (1998, Lemma 4). In that equilibrium, the leader’s equilibrium

strategy is x̃L(θ) = 2
3
θ. After observing the leader’s effort xL, each follower’s point

belief about the state is βi(xL) = 3
2
xL, i = 1, 2. Hence, each follower chooses effort

xFi(xL) = 1
3
βi(xL) = 1

2
xL, i = 1, 2. The equilibrium efforts of L, F1, F2 are 2

3
θ, 1

3
θ,

and 1
3
θ respectively.

The equilibrium welfare in this equilibrium is WL(θ) = W (2
3
θ, 1

3
θ, 1

3
θ) = θ2 So,

the welfare with leading by example is higher than that with symmetric informa-

tion, i.e, WL = θ2 > WN = 5
6
θ2.3 Compared with the team structure, leading

by example improves welfare, because the equilibrium effort of the leader is larger

than under symmetric information, but still below the first-best level. The intu-

ition is as follows. The leader gets a portion of the output generated by followers.

In a separating equilibrium, the leader’s effort fully reveals the information about

the state. The harder the leader works, the higher the followers’ beliefs about the

state, thus the harder followers work and the better off is the leader. Being a leader

and signaling to the followers gives leader L extra incentive to work hard beyond

the incentive from her own share of the output. Given that the equilibrium efforts

with symmetric information are too low to begin with, inducing harder work is

welfare improving.

2.2 Sequential leading by example

Leading by example improves welfare in teams as shown by Hermalin (1998). But

in equilibrium, efforts of the followers F1 and F2 are still too low. Welfare would

be even higher if we could motivate any of the followers to exert higher effort in

3This is true except when θ = 0. For the sake of brevity, I will not repeat this caveat later.
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equilibrium. This requires that the followers have some extra signaling incentive as

the leader L had in the previous example. This leads us to change the Λ structure

into a chain (see Figure 3). The timing of the game is now modified as follows.

In period 2, only F1 (not F2 ) can observe L’s effort xL, and he exerts effort in

period 2. In period 3, F2 observes F1’s effort xF1 and exerts effort xF2 last.

•L → •F1→ •F2

Figure 3: The Chain Structure (C3)

The chain structure contains two stages of leading by example. Leader L signals

to F1, and F1 signals to F2. Critically, F2 cannot observe the leader L’s effort

directly in period 2, otherwise F1 would have no signaling incentive because F2

would have already known the state from L’s effort.

A separating Perfect Bayesian Equilibrium (SPBE) of this game is a strategy

profile 〈x̃L(·), x̃F1(·), x̃F2(·)〉 and posterior point beliefs βF1(·), βF1(·) such that:

(S) All x̃i, i ∈ {L, F1, F2}, βj, j ∈ {F1, F2} are monotonic.

(PL) ∀θ, x̃L(θ) ∈ arg max
xL≥0

θ

3
(xL + x̃F1(xL) + x̃F2(x̃F1(xL)))− 1

2
x2
L.

(P1) ∀xL, x̃F1(xL) ∈ arg max
xF1≥0

βF1(xL)

3
(xL + xF1 + x̃F2(xF1))− 1

2
x2
F1.

(P2) ∀xF1, x̃F2(xF1) ∈ arg max
xF2≥0

βF2(xF1)

3
(xL + xF1 + xF2)− 1

2
x2
F2.

and

(B) βF1 = x̃−1
L , and βF2 = βF1 ◦ x̃−1

F1

S says that each player’s effort fully reveals his belief about the state under

any history. B specifies the belief updating rule. PL, P1, and P2 are the usual

perfection conditions: Each player is acting optimally given other players’ beliefs

and best responses.

It is easy to check that the following is a SPBE of this game:4

x̃L(θ) = kLθ,

4 This result is a special case of Theorem 4.1.
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βF1(xL) =
xL
kL

x̃F1(xL) = kF1βF1(xL) =
kF1

kL
xL

βF2(xF1) =
xF1

kF1

x̃F2(xF1) = kF2βF2(xF1) =
kF2

kF1

xF1

The constants ki, i = {L, F1, F2} are given by

kF2 =
1

3
≈ 0.333, kF1 =

1 +
√

5

6
≈ 0.539, kL =

1 +
√

7 + 2
√

5

6
≈ 0.731

The equilibrium effort of player i is kiθ, i = {L, F1, F2} and the corresponding

welfare is

W S = W (kLθ, kF1θ, kF2θ) ≈ 1.13554θ2

It is clear that W S > WN , so we have established that the chain structure (Figure

3) with sequential leadership yields greater welfare than the Λ structure (Figure

2) with a single leader.

This result can be interpreted in the following way. In the chain structure,

F1 plays leading by example with F2 as F2 infers the state from his effort. Due

to signaling, F1’s response as a function of his belief about the state must be

steeper than what he chooses when he has no followers. Note that the leader L

cannot influence the beliefs of player F2 directly as F2 cannot observe his effort,

but indirectly L can influence the belief and effort of F2 through the intermediate

player F1.

The leader L benefits from output generated by both F1 and F2. Her effort

provides the information about the state. The greater her effort, the higher F1’s

belief, the greater F1’s effort, the higher F2’s belief, the higher F2’s effort, and

the better off is the leader. But the difference is now that F1’s response given

his belief β1 is steeper under the chain than under the Λ structure. Therefore, to

determine L’s incentive for signaling, we can imagine that there is just one stage of

signaling, as in Figure 2, with the share of F1 modified to kF1 ≈ 0.539 > 1/3. This

extra benefit increases the leader’s equilibrium effort, thus we obtain kL > 2/3.

Since all the equilibrium efforts are still below first-best levels, we have obtained

our welfare-comparison result.

At this time, it is worthwhile to check the role of additively separable pro-

duction functions in this model. First, additive separability isolates the signaling
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effects from other forces possibly driven by strategic complements or substitutes

between workers. If information is symmetric, the timing of moves is irrelevant

as everyone has a dominant strategy, thus organizational structure does not play

any role. When information is asymmetric, all the welfare comparison results must

come from the signaling incentives. Second, additive separability greatly simplifies

the computation of equilibrium. The strategic role of effort in this model is that

it conveys valuable information about the state from one player to his followers.

In the dynamic signaling game defined above, each worker’s incentive consists of

two parts. The first (direct) part is his share of the output. The second (indirect)

part is strengthening of incentives of workers whose beliefs he can influence by his

own effort, either directly or indirectly. In the chain, F1’s effort can only affect

F2’s belief, while L can influence F1’s belief directly and F2’s belief indirectly. F2

cannot influence anyone’s belief and therefore the second incentive component is

zero. The higher is each incentive part, the harder one works.

2.3 Two leaders

Beyond the chain and the Λ structure, there is another hierarchy, called the V

structure, possible with three workers. In the V structure, L1 and L2 are leaders

and F is the only follower of both. See Figure 4. The time line for the V structure

•L1 •L2
↘ ↙
•F

Figure 4: V structure, with two leaders

is the following:

• Nature chooses θ ∈ [0,∞), which is unknown to all.

• In period 1, both leaders L1 and L2 learn θ and choose x1, x2 simultaneously.

• In period 2, F observes both leaders’ efforts x1, x2 and exerts effort xF .

• Payoffs are realized.
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A SPBE of this game is a strategy profile 〈e1(·), e2(·), eF (·, ·)〉 and belief func-

tion bF (·, ·) such that:

(S) ei(θ), i = {1, 2} are monotonic.

(P1) ∀θ, e1(θ) ∈ arg max
x1≥0

θ

3
(x1 + eF (x1, e2(θ)) + e2(θ))− 1

2
x2

1.

(P2) ∀θ, e2(θ) ∈ arg max
x2≥0

θ

3
(e1(θ) + eF (e1(θ), x2) + x2))− 1

2
x2

2.

(PF ) ∀x1, x2 ≥ 0, eF (x1, x2) ∈ arg max
xf≥0

bF (x1, x2)

3
(x1 + x2 + xf )−

1

2
x2
f .

(B) ∀θ, bF (e1(θ), e2(θ)) = θ.

P1 and P2 and PF are the perfection conditions. Note that B says that the

belief of F is correct on the equilibrium path, but it is silent about F’s out-of-

equilibrium beliefs.

Obviously, PF could be replaced by

(PF ′) eF (x1, x2) = bF (x1, x2)/3

For convenience, define β : Θ × Θ → Θ by β(θ1, θ2) := bF (e1(θ1), e2(θ2)). Then

bF (x1, x2) = β
(
e−1

1 (x1), e−1
2 (x2)

)
. After simplifying and using (PF ′), we can

rewrite conditions P1 and P2 and B as:

(P1′) ∀θ, e1(θ) ∈ arg max
x1≥0

θ

3

(
x1 +

1

3
β(e−1

1 (x1), θ)

)
− 1

2
x2

1.

(P2′) ∀θ, e2(θ) ∈ arg max
x2≥0

θ

3

(
x2 +

1

3
β(θ, e−1

2 (x2))

)
− 1

2
x2

2.

(B′) ∀θ, β(θ, θ) = θ.

To find an equilibrium, it suffices to find functions {e1, e2, β} satisfying condi-

tions S, P1′, P2′, B′. There are many belief functions satisfying B′. I will use the

following pessimistic belief assumption.

βp(θ1, θ2) = min(θ1, θ2). (1)

There are two main justifications for this assumption. First, it gives both leaders

some incentive to signal to the follower. If any of the leaders shirks, the follower

will detect it immediately and punish that deviating leader by expending lower
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effort because the follower believes that the minimum of the two signals, here the

one revealed by the deviating leader, is the true state. Second, if the follower’s

belief is the maximum of the two signals, then it is impossible to support any

separating equilibrium, because at least one leader will have incentive to deviate

either downward (free-riding on the other leader to signal to the follower) or upward

(taking advantage of the benefits of signaling as the follower, in this case, will

depend solely on his effort for updating beliefs).5 If the follower believes that off

the equilibrium path only one of the leaders is deviating, which is mostly likely

to be the case, the pessimistic belief function is a better choice as the optimistic

belief cannot support any equilibrium. Hence, we will maintain this pessimistic

belief assumption from now on. For detailed discussions of the belief functions in

the V structure, see the appendix.

Fix β = βp. Let ē(θ) := 1+
√

5
6
θ and e(θ) := θ

3
. It is easy to verify that ei = ē(θ),

i = 1, 2, or ei = e(θ), i = 1, 2 satisfy the above conditions (P1′), (P2′), (B′) with

β = βp. We call the equilibrium with ei = ē(θ) (e(θ)), ∀i the U(L)-equilibrium. In

the U-equilibrium, both leaders exert higher efforts ē, while in the L-equilibrium,

both leaders choose e = 1
3
θ = xNi , their efforts under symmetric information. In

the appendix, I show that all separating equilibria corresponding to βp are bounded

by these two equilibria. Therefore, I can find the upper and lower bounds of the

corresponding equilibrium welfare:

5

6
θ2 ≤ W 2L ≤ (8 + 5

√
5)

18
θ2

The lower bound corresponds to the L-equilibrium, while the upper bound corre-

sponds to the U-equilibrium. Any number in between is also obtainable.

2.4 Welfare comparison

In previous subsections, we solve for equilibrium under four different structures

with three workers. The computed welfares are ranked as follows:

WN = minW 2L < WL < maxW 2L < W S < W FB

5See appendix section C.2 for a detailed proof.
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Figure 5: Welfare Rankings

As a conclusion, the chain structure dominates each of the other three struc-

tures.6 None of them can achieve first-best welfare, however. Figure 5 summarizes

these results.

As mentioned, workers on the higher tier of a chain exert higher efforts. One

concern is that their efforts are inefficiently high, possibly in a team with large N .

Part of the following analysis is to demonstrate that this phenomena is not going

to happen in a team with arbitrary N . In the next section, I study the general

model, and prove the optimality of the chain in the end.

3 The General Model

Let N = {1, 2, · · · , N}. Consider a team with N identical members. Each member

n chooses an effort en ∈ [0,∞). The value to the team is V = θ
∑N

n=1 en, where

θ ∈ Θ = [0,∞) is a stochastic productivity factor. Each member has utility

function w − c(e), where w is his wage, and the disutility function c is twice

differentiable and strictly convex with c(0) = c′(0) = 0, c′(∞) =∞.

Following Holmstrom (1982), we assume that contracts can only be written

contingent on total output V , not on individual efforts. Furthermore, we restrict

attention to affine-shares contracts, i.e., wn(V ) = snV + tn. Here {sn, tn}Nn=1

are constants. No external source of funds means that
∑N

n=1 wn ≤ V . Requiring

contracts to be renegotiation-proof means
∑N

n=1wn ≮ V . Therefore
∑N

n=1 sn =

1, sn ≥ 0, and
∑N

n=1 tn = 0. We are interested in team members’ equilibrium

efforts. The transfers {tn} are irrelevant to our analysis, hence omitted in our

calculations. Let ∆N = {s = (s1, · · · , sN)|
∑N

i=1 si = 1, si ≥ 0,∀i} denote the

6 Technically, there is one more structure with three workers constructed by deleting the link
from L2 to F in the V structure. It is easy to see that this structure is less efficient than the Λ
structure, hence worse than the chain.
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N -dimensional simplex.7 Then an affine-shares contract is just an element s of

∆N .

As we have seen in section 2, hierarchy matters for the performance of the

team. To define a hierarchy formally, we first review some concepts from graph

theory.

Definition 1 (Graph) A directed graph (N ,d) consists of a set of nodes N =

{1, 2, · · · , N} and an adjacency matrix d = (dij)N×N . dij = 1 if there is a directed

link from i to j, otherwise dij = 0.

A path from i to j is a sequence of nodes i1, i2, · · · , ik such that ik = j, and

dii1 = di2i3 = · · · dik−1ik = 1, while k is called the length of this path.

In this paper, N is fixed, thus we refer to d as a graph. For a fixed adjacency

matrix d, we can define DF i = {j ∈ N|dij = 1} as the set of direct followers of

i, and F i = {j ∈ N|there is a path from i to j} as the set of i’s followers, direct

and indirect. Similarly, we define DP i = {j ∈ N|dji = 1} as the set of direct

predecessors of i, and P i = {j ∈ N|there is a path from j to i} as the set of i’s

predecessors, direct and indirect. By definition, j ∈ DF i if and only if i ∈ DP j.

Similarly, j ∈ F i if and only if i ∈ P j. Obviously DF i ⊂ F i and DP i ⊂ P i,∀i.

Definition 2 (Ordered Partition) P = {A1, A2, · · · , Am} is called an ordered

partition of A if (1) Ai 6= ∅ for all i; (2) ∪mi=1A
i = A; (3) Ai ∩ Aj = ∅,∀i 6= j.

Definition 3 (Hierarchy) A hierarchy H = (d,P) on N is a directed graph

(N ,d) together with an ordered partition P= {N1, N2, · · · , Nh} of N such that:

(a) for k = 1, 2, · · · , h − 1, if j ∈ Nk and dji = 1, then i ∈ Nk+1. If j ∈ Nh,

then dji = 0,∀i.

(b) for k = 2, · · · , h, if j ∈ Nk, then there is a node i ∈ Nk−1 such that dij = 1.

Definition 4 In a hierarchy H = (d,P) with P= {N1, N2, · · · , Nh}, the number

h is called the height of H.

7Later on, I will allow
∑N

n=1 si ≤ 1 in some of the proofs.
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For a fixed hierarchyH, Nk is just the set of members on level k, and nk = |Nk|
is the number of workers on level k. The workers in N1 are called the leaders, while

the workers in Nh are called terminal workers.

Condition (a) means that a path can only connect nodes from one level to the

next lower level, while condition (b) says that all workers except leaders have at

least one predecessor. Terminal workers have no followers and leaders have no

predecessors.

Remark 1 Notice that from Definition 3(a), direct links only follow from the lead-

ers to middle level workers, and from middle level workers to terminal workers.

The length of any path in a hierarchy is hence bounded above by the height of the

hierarchy. Also, links between nodes on the same level are not allowed.

When the partition is obvious from the context, I refer to the adjacency matrix

d as the hierarchy. Here are some examples of hierarchies.

Example 1 (TN) Figure 6a is a hierarchy with N=5, which is the standard team

structure. The general team with N members is denoted TN .

Example 2 (L(1,N−1)) Figure 6b is a hierarchy with height 2, one level with one

leader and the other level with 4 direct followers. This is the structure explored in

Hermalin (1998). The general leading by example hierarchy with one leader and

N − 1 followers is denoted L(1,N−1).

(a) team T5 (b) leading by example L(1,4) (c) chain C3

Figure 6: Examples of Hierarchies
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Example 3 (CN) Figure 6c is a hierarchy with three levels. Member B follows A,

but is followed by C. The general chain with N workers is denoted CN .

We have analyzed these examples in section 2 for the case N = 3. A com-

mon feature of the above three examples is that a worker has at most one direct

predecessor, and hence can make inferences regarding the state only through that

predecessor’s effort. The equilibrium outcomes are quite different when a worker

can draw multiple inferences of the state from efforts of his predecessors. I distin-

guish these two cases.

Definition 5 A hierarchy H is called simple if any worker who is not a leader

has a unique predecessor; H is called complicated if it is not simple.

In Examples 1-3, hierarchies are all simple. The V structure (Figure 4) is a

complicated hierarchy.

Given the payoff defined by the contract s, and the timing defined by the

hierarchy H, I can study the equilibrium and make welfare comparisons across

different hierarchies as I did in the previous section.

4 Simple Hierarchies

In this section we study the general case of simple hierarchies.

Given an affine-shares contract s = {si, i ∈ N} ∈ ∆N and a simple hierarchy

H, define an h+ 1 stage dynamic game G(s,H) as follows:

• t = 0, nature chooses θ, which is unknown to all.

• t = 1, the leaders in N1 learn θ and exert effort simultaneously.

• t = 2, each member j ∈ N2 observes the effort of his unique direct predecessor

DP j(a singleton set in this case), who exerted effort in period t = 1. Then,

members in N2 exert effort simultaneously.

...
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• t = k + 1, each member l ∈ Nk+1 observes the effort of his unique direct

predecessor DP l, who exerted effort in period t = k. Then, members in N1+k

exert effort simultaneously.

...

• θ is realized and output is divided according to s.

The following theorem fully characterizes the separating equilibrium.

Theorem 4.1 (Equilibrium Characterization) If the hierarchy H is simple,

then there exists a separating equilibrium of G(s,H) in which the equilibrium efforts

x̃i(θ) are the solutions to the following system of differential equations:

siθ

1 +
∑
j ∈ F i

x̃′j(θ)

x̃′i(θ)

 = c′(x̃i(θ)), i = 1, 2, · · · , N. (2)

If F i = ∅, then the summation
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)
is zero by definition.

This result follows from a standard cost-benefit analysis. If player i deviates by

exerting ∆xi more effort, then that effort will affect the beliefs of all his followers

by ∆θ ≈ ∆xi
x̃′i(θ)

.8 Hence each j ∈ F i will contribute more by the amount x̃j(θ+∆θ)−
x̃j(θ) ≈ ∆θ · x̃′j(θ). Therefore the benefit of this deviation to i is approximately

siθ

∆xi +
∑
j∈F i

∆θ · x′j(θ)

 ≈ siθ

1 +
∑
j ∈ F i

x̃′j(θ)

x̃′i(θ)

∆xi

The cost of this deviation is:

c(x̃i(θ) + ∆xi)− c(x̃i(θ)) ≈ c′(x̃i(θ))∆xi

In equilibrium, the benefit equals the cost, which leads to Equation (2).

The equilibrium characterization from Theorem 4.1 has some interesting fea-

tures. First, the equilibrium effort of player i only depends on his share si and

the equilibrium efforts of his followers. It does not depend on the effort of his

predecessors, or on the effort of other workers on the same level as him. Again,

8If H is simple, a deviation by player i only affects his followers.
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this follows from additive separability of the production function. Second, all fol-

lowers, not just direct followers, affect equilibrium effort. Third, these equations

are recursively solvable. Solving for a player’s equilibrium effort function requires

solving for all of his followers’ equilibrium efforts, which requires solving for the

equilibrium efforts of the followers’ followers, etc.

The term siθ comes from i’s share of the output, and the term siθ
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)

comes from i’s signaling incentive and it is always nonnegative. If the signaling

term
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)
vanishes in equation 2, the solutions are just the efforts that

workers would expend under symmetric information. With this extra signaling

incentive, in equilibrium i must expend more effort. Formally, we have:

Proposition 4.2 The equilibrium effort x̃i(θ) of player i characterized in Theorem

4.1 is greater than his effort with symmetric information; that is,

x̃i (θ) ≥ c′−1(siθ) i = 1, 2, · · · , N.

Strict inequality holds if θ > 0 and F i 6= ∅.

Proof The weak version is obvious. If θ > 0 and F i 6= ∅, then (1+
∑

j ∈ F i
x̃′j(θ)

x̃′i(θ)
) >

1, hence c′(x̃i(θ)) > siθ, or x̃i (θ) > c′−1(siθ). �

Finding closed-form solutions to the above system of equations (2), in gen-

eral, is infeasible. To get explicit solutions, further restrictions on the disutility

functions are needed.

Assumption C: The disutility function is c(x) = 1
2
x2.

Theorem 4.3 Under Assumption C, the solutions to equation (2) are x̃i(θ) =

ki(s,H)θ, where k(s,H) = {ki(s,H), i ∈ N} satisfies the following equations:

ki(s,H) =

si +

√
s2
i + 4si

(∑
j∈F i kj(s,H)

)
2

, i = 1, 2, · · ·N (3)

Proof For brevity, I write ki(s,H) as ki. If x̃i(θ) = kiθ, then x̃′i(θ) = ki, so

equation (2) is equivalent to:

siθ

1 +
∑
j ∈ F i

kj
ki

 = c′(x̃i(θ)) = x̃i(θ) = kiθ, i = 1, 2, · · · , N (4)
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Canceling θ:

si

(
1 +

∑
j ∈ F i kj

ki

)
= ki, i = 1, 2, · · · , N

Solving this quadratic equation gives us ki =
si+

√
s2i+4si(

∑
j∈Fi kj)

2
. �

Define g(x, y) =
x+
√
x2+4xy

2
, x > 0, y ≥ 0 to be the unique positive solution to

x

(
1 +

y

g(x, y)

)
= g(x, y).

See Lemma A.1 in the appendix for some useful properties of g. Then equation

(3) can be rewritten as:

ki(s,H) = g(si,
∑
j∈F i

kj(s,H)), i = 1, 2, · · · , N (5)

Theorem 4.3 gives linear solutions for equation (2) under quadratic disutility.

The constant ki, which quantifies how player i responds to his belief about the

state in equilibrium, is called i’s responsive coefficient. These coefficients can be

calculated by equation 3 recursively.9

From Theorem 4.1 and Theorem 4.3, we see that each player’s equilibrium effort

depends positively on two components: one is the worker’s share si of the total

output, the other is the signaling part depending on the responsive coefficients of

i’s followers. For two workers with the same shares, if one worker is the follower

of the other, then the signaling incentive of that follower should be weaker than

the leader. It is intuitive to guess that the equilibrium effort of the leader should

be higher than the follower. This result is formally presented in the following

proposition.

Proposition 4.4 If si = sj > 0 and j ∈ F i, then x̃i(θ) > x̃j(θ).

9 Here is a simple algorithm to compute all the {ki}Ni=1 in N steps:

1. Start with terminal workers j ∈ Nh. Notice that kj = sj for these workers.

2. Suppose we have computed kj for all workers in Nh, Nh−1, · · · , Nk. Then we can calculate
ki for each i ∈ Nk−1 using ki = g(si,

∑
j∈F i kj), since F i ⊂ ∪k≤t≤hN t.
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Proof If j ∈ F i, then F j ⊂ F i. Therefore ki(s,H) > kj(s,H) by Theorem 4.3,

hence x̃i(θ) > x̃j(θ). �

As a special case, for equal shares, we have:

Corollary 4.5 If si = 1/N,∀i, then the higher a player is in the hierarchy, the

larger the equilibrium effort, and the smaller his equilibrium payoff.

Proof If si = sj = 1/N and j ∈ F i, then x̃i(θ) > x̃j(θ) by Proposition 4.4,

therefore c(x̃i(θ)) > c(x̃j(θ)). Then i works harder than j, but gets the same share

of the output as j, so i’s equilibrium payoff must be smaller. �

4.1 Welfare Comparisons for Simple Hierarchies

In the previous subsection, I solved for the equilibrium efforts for a fixed hierar-

chy. The aggregate welfare definitely depends on the members’ shares, but it also

depends crucially on the structure of the hierarchy: how many members are on

each level, how are they connected with each other, how many direct or indirect

followers each worker has, and what the followers’ shares are.

The aggregate welfare in the equilibrium characterized in Theorem 4.3 is

SW (s,H) = θ
∑
i∈N

ki(s,H)θ −
∑
i∈N

1

2
(ki(s,H)θ)2

= θ2
∑
i∈N

(
ki(s,H)− ki(s,H)2

2

)
(6)

Clearly, the value of θ is irrelevant if we want to maximize aggregate welfare

with respect to the hierarchy structure and the shares. Equivalently we define

w(s,H):=
∑

i∈N

(
ki(s,H)− ki(s,H)2

2

)
. Then the welfare maximization problem

can be written as

max
s,H

w(s,H) subject to
∑
i∈N

si = 1, si ≥ 0. (7)

This program can be decomposed into two steps:
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1. For a fixed hierarchyH, find the optimal shares s∗(H) by solving the following

problem:

max
s≥0,

∑
i∈N si=1

w(s,H) =
∑
i∈N

(
ki −

k2
i

2

)
(8)

We define w̄(H) := w(s∗(H),H) as the maximum value above.

2. Maximize over different simple hierarchies with optimal shares s∗(H):

max
H

w(s∗(H),H) = max
H

w̄(H)

Below is the main result of this paper.

Theorem 4.6 (Optimal Simple Hierarchy) The chain is the optimal simple

hierarchy, i.e.,

w̄(H) = max
s≥0,

∑
i∈N si=1

w(s,H) ≤ w̄(CN) = max
s≥0,

∑
i∈N si=1

w(s, CN)

The proof is shown in a sequence of steps.

First, to make two hierarchies comparable, we transform any hierarchy H into

a chain, and compare the equilibrium efforts under these two hierarchies using the

same share profile. Each transformation is determined by a permutation σ of N
by assigning member σ(i) to the ith level on a chain, i = 1, · · · , N . For a fixed

hierarchyH, we look for a special permutation σ satisfying the following condition:

Condition OP: If j is i’s follower under H, then σ(i) < σ(j).

The existence of such a permutation is shown in the following lemma.10

Lemma 4.7 For any hierarchy H, there exists a permutation σ satisfying Condi-

tion OP.

Proof For each i, let fi = #F i be the number of followers of i under H. We can

enumerate the numbers in N by decreasing order of fi (take any order if fi = fj

for i 6= j). We define the permutation σ by mapping each i to its place under this

enumeration. Then, if j ∈ F i, j’s follower is also i’s follower, hence F j is a strict

subset of F i. Therefore fi > fj, so i must come earlier in σ than j, equivalently,

10There are multiple permutations satisfying Condition OP. We just need one.
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σ(i) < σ(j). �

With the permutation σ given in the above lemma, we construct the chain

Cσ(N ) by assigning member σ(i) to the ith level, i = 1, · · · , N . We call this the C-

transformation, because this procedure transforms any hierarchy into a chain.

Given a share profile s for H, we assign the same share si to member i in the chain

Cσ(N ). Condition OP implies that this transformation has some nice properties.

Lemma 4.8 The C-transformation given by a permutation σ satisfying condition

OP has the following properties.

1. For fixed shares s, any member’s equilibrium effort is weakly higher in Cσ(N )

than in H, that is,

ki(s, Cσ(N )) ≥ ki(s,H)

2. For fixed shares s, we can find another share profile s̃ such that s̃ ≤ s but

ki(̃s, Cσ(N )) = ki(s,H)

Therefore, w(̃s, Cσ(N )) = w(s,H).

The C-transformation preserves the subordination relation between members.

If i is a predecessor of j in H, then i is j’s predecessor in Cσ(N ). For some players,

however, the set of followers may be strictly larger in Cσ(N ). Each worker’s equilib-

rium effort depends on his own share and the sum of equilibrium efforts of all his

followers. Since the shares are the same under the two hierarchies, each member

will have larger incentive to signal when he has more followers in Cσ(N ), therefore

his equilibrium effort is weakly higher. Moreover we can reduce his share suitably

to make his equilibrium effort equal under two hierarchies. Therefore for any hier-

archy H with a share profile s, the chain Cσ(N ) can generate the same welfare using

a share profile s̃, which uses less total shares than s. But s̃ in general does not

belong to ∆N even if the initial share profile s is in ∆N .

Next we show that if we distribute the the extra shares optimally to the team

members in the chain, we can generate even higher welfare. Actually we show this

result for any hierarchy, not just the chain.
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Formally, for each fixed H and t ∈ (0, 1], define

φ(t,H) := max
s
w(s,H)

s.t:
∑
i∈N

si = t, si ≥ 0

as the maximal achievable welfare under H with the constraint that the total

shares sum up to t. In particular when t = 1, φ(1,H) = w̄(H). In the appendix,

we show that increasing the total constraint on shares improves welfare whenever

total shares are less than 1.

Theorem 4.9 For any simple hierarchy H, if 1 ≥ t1 > t2 ≥ 0, then φ(t1,H) >

φ(t2,H).

Using Lemma 4.8 and Theorem 4.9, we show that the chain structure is optimal

whenever the total shares are less than 1.

Proposition 4.10 For any simple hierachy H, φ(t,H) ≤ φ(t, CN),∀t ∈ (0, 1].

Proof For any t ∈ (0, 1], suppose s is optimal, i.e., φ(t,H) = w(s,H). Then from

Lemma 4.8, we can find a welfare equivalent s̃ in the chain Cσ
(N), but use less total

share, i.e, w(s,H) = w(s̃, Cσ(N )), |s̃| ≤ |s| = t. By Theorem 4.9, extra shares always

yield greater welfare if we adjust the shares optimally. Formally, we have:

φ(t,H) = w(s,H) = w(s̃, Cσ(N ))

≤ max
s≥0,|s|=|s̃|

w(s, Cσ(N )) = φ(|s̃|, Cσ(N )) ≤ φ(t, Cσ(N ))

The first inequality holds since s̃ is not necessarily optimal. The second inequality

follows from Theorem 4.9 since |s̃| ≤ |s| = t. Note that both Cσ(N ) and CN repre-

sent the same hierarchy: the chain of length N . Therefore, φ(t, Cσ(N )) = φ(t, CN).11

Thus, we finish the proof of Proposition 4.10. �

Proposition 4.10 immediately implies Theorem 4.6 by setting t = 1.

The optimality of the chain comes from three observations. First, the chain

gives every member the maximal signaling incentives. Note that motivating efforts

11This result does not hold if the team is not homogeneous either because different workers
have different disutility functions, or because different workers value the project differently.
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alone is not always welfare improving, as the welfare function is declining after

effort exceeds first-best level. Second, we can use fewer shares to provide incentives

to the workers in the chain to generate the same levels of efforts than in any other

hierarchy. Third, extra shares, if distributed optimally among the team, improve

welfare.

Remark 2 If the main program is to maximize equilibrium output or equiva-

lently
∑

i∈N ki(s,H) rather than equilibrium welfare, then the chain is still optimal,

since each worker’s equilibrium effort is weakly higher after C-transformation (see

Lemma 4.8).

4.2 The Chain CN
Given the optimality of the chain, we next study the optimal sharing rule and

equilibrium effort levels in the chain. We give a detailed analysis of the chain in

this subsection.

Consider the chain CN . We denote by i the unique worker on level i, i =

1, · · · , N . Let si be worker i’ share. Then by Theorem 4.3, we have the following

expression for ki(s, CN):

kN(s, CN) = g (sN , 0) = sN

kN−1(s, CN) = g (sN−1, kN(s, CN))
...

k1(s, CN) = g

(
s1,

N∑
j=2

kj(s, CN)

)

4.2.1 Equal shares

To get quantitative results about the strength of sequential signaling effects—and

also their limitations—here we calculate the welfare function for equal share seq,

that is, si = 1
N
,∀i. Equal shares corresponds to the case of public good provision

or committee service, as each team member has roughly the same stake in the

project.

First, we have the following estimates regarding responsive coefficients:
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Lemma 4.11 For equal shares seq in the chain CN , we have

1

2N
< ki(s

eq, CN)− ki+1(seq, CN) <
1

N
i = 1, · · · , N − 1

Hence:
N + 1− i

2N
< ki(s

eq, CN) <
N + 1− i

N
i = 1, · · · , N − 1

In particular, ki(s
eq, CN) < 1,∀i.

With these bounds, we can estimate the welfare SW (seq, CN).

Proposition 4.12 The aggregate welfare for CN with equal shares, SW (seq, CN),

satisfies:
5

24
Nθ2 ≤ SW (seq, CN) ≤ (

1

3
N +

1

4
)θ2

The first-best aggregate welfare is 1
2
Nθ2, which is, of course, infeasible here.

Also, the free-riding problem is more severe in larger teams as each member’s share

is smaller. However, Proposition 4.12 shows that the signaling incentives in the

team are strong enough to yield at least 5
12
≈ 42% of the first-best welfare with

equal shares. Optimal shares potentially could do better.

From Lemma 4.11, we see that for the equal share rule, all the ki are less the

first-best. From Example 4 (below), however, we see that ki could be greater than

the first-best under some shares. So, we look for a sufficient condition on s to

guarantee that ki(s, CN) ≤ 1. The following proposition is one result along this

line.

Proposition 4.13 If the shares s for the chain are monotonic, so that 0 < s1 ≤
s2 · · · ≤ sN , then ki(s, CN) < 1,∀i.

The assumption of this proposition is quite general. Equal shares satisfy this

condition. By continuity, this conclusion still holds for shares s sufficiently close

to seq or any monotonic shares. Note that s′ = (0.8, 0.1, 0.1) in Example 4 is not

monotonic, and indeed kA = 1.007 is greater than 1 for s′.
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4.2.2 Optimal shares

In this subsection, we characterize the optimal shares for the chain with N workers.

First, we start with an example with three workers.

Example 4 Table 1 lists the equilibrium efforts and welfare with different share

rules, where A is the leader, C is the terminal worker, and B is the middle worker.

seq are the equal shares, and s∗ are the optimal shares.

s = (sA, sB, sC) k = (kA, kB, kC) welfare w(s, C3)
s′ =(0.8, 0.1, 0.1) (1.0078, 0.1618, 0.1000) 0.7437

s′′ =(0.75, 0.1, 015) (0.9994, 0.1823 ,0.1500) 0.8044
seq = (0.3333, 0.3333, 0.3333) (0.7312, 0.5393, 0.3333) 1.1355
s∗ =(0.1997, 0.2668, 0.5335) (0.5721, 0.5335, 0.5335 ) 1.1909

Table 1: C3 with different shares

There are a few points worth noting. Because kA(s′, C3) > 1, A’s equilibrium effort

is actually higher than first-best level. Transferring a small share from A to C, as

shown in s′′, is welfare improving, because it mitigates A’s overly strong signaling

incentive in s′ and gives C more shares so that C will expend higher effort. For

equal shares seq, efforts are monotonic, but still below first-best levels (Lemma

4.11). But equal shares are not optimal, i.e., seq 6= s∗. Moreover, for optimal

shares, s∗A < s∗B < s∗C , but k∗A > k∗B = k∗C . The worker higher in the hierarchy

actually has a smaller share, but works harder due to stronger signaling incentives

from his followers. We will see that this is the general pattern for the chain of any

length.

Equal shares are in general not optimal. The effort of workers on higher levels

is too high compared with workers on lower levels. Now we turn to the question of

how to find the optimal shares. Unfortunately, the expressions for ki are recursive

and the exact expressions involving {si} are quite complicated. Therefore the

Lagrange multiplier approach to maximize w(s, CN) with constraint s ∈ ∆N is not

quite informative. Nevertheless, we use a variation argument to show that optimal

shares s∗ and the corresponding responsive coefficients k∗i = ki(s
∗, CN) satisfy the

following conditions:
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Theorem 4.14 The optimal shares s∗ for the chain satisfy

1

2
<

s∗i
s∗i+1

< 1, ∀i = 1, 2, · · · , N − 2, and
s∗N−1

s∗N
=

1

2
.

Moreover, the k∗i s satisfy 1 > k∗1 > k∗2 > · · · > k∗N−1 = k∗N > 0.

As a consequence, we get a chain of inequalities:

0 < s∗1 < s∗2 < · · · < s∗N = k∗N−1 = k∗N < · · · < k∗2 < k∗1 < 1. (9)

All workers are symmetric ex ante, but we do not want to distribute the shares

equally to them as different workers have different signaling incentives that vary

with the their positions on the chain. Under optimal shares in the chain, a worker

has stronger signaling incentives than his followers, although he gets a smaller

share of the output.

5 Complicated Hierarchies

Although simple hierarchies are the structures typically observed in organizations,

complicated hierarchies exist as well. Sometimes a worker may communicate with

multiple bosses. I explore complicated hierarchies in this section.

For a complicated hierarchy, we can define the dynamic signaling game as

before, except that now a worker can potentially observe efforts from multiple

direct predecessors. After adopting the pessimistic belief assumption as I did for

the V structure with two leaders, the equilibrium characterization is quite similar

to the case of simple hierarchies.

Theorem 5.1 If H is complicated, then there exists a separating equilibrium of

G(s,H) in which the equilibrium efforts are x̃i(θ) = ki(s,H)θ, while ki(s,H) is

given recursively by

ki(s,H) = g(si,
∑
j∈F i

kj(s,H)), i = 1, 2, · · ·N.
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Qualitatively, Theorem 5.1 looks exactly the same as Theorem 4.3. There are

some major differences. First, we need the pessimistic belief assumption in compli-

cated hierarchies, while we did not need any assumption on the belief functions for

simple hierarchies. Second, there are multiple equilibria even with the pessimistic

belief assumption as we have seen in the V structure (Section 2). Uniqueness of

the equilibrium is not guaranteed.

From now on, we focus on the equilibrium identified by Theorem 5.1 for both

simple and complicated hierarchies. Given the similarity between Theorem 5.1

and Theorem 4.3, we can show that the results proved for simple hierarchies, like

Proposition 4.4, Lemma 4.8, and Theorem 4.9, also hold for complicated hierar-

chies. I will directly use them without proof.

5.1 Welfare Improving Operations

In section 4.1, we have shown that the chain structure is optimal among simple

hierarchies. Next we want to show that the chain structure is optimal among all

hierarchies, simple or complicated. To achieve this goal, we explore two welfare-

improving operations on hierarchies.

Definition 6 For fixed hierarchy H = (d,P), let H + ij be the hierarchy formed

from H by adding one direct link from i to j in d.

Note that in the definition i and j should not be linked in H, and j should lie on

the next level from i, otherwise H + ij is not a hierarchy according to Definition

3. Obviously, H + ij is not simple even if H is. Adding links enlarges the sets of

followers, hence pushes workers’ effort higher by Theorem 5.1. Formally:

Proposition 5.2 For fixed share profile s, kl(s,H) ≤ kl(s,H + ij), ∀l ∈ N .

From Proposition 5.2, it is intuitive to guess that for fixed share profile s, adding

links will increase welfare: w(s,H) ≤ w(s,H + ij). We give a counterexample in

the Appendix to show that this naive argument is wrong. The reason is that some

players’ effort is already too high under strong signaling incentives, and motivating

higher effort for those workers will actually decrease welfare. Instead, once we

adjust the share optimally, we can show that adding links increases welfare.
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Theorem 5.3 For every fixed t ∈ (0, 1], φ(t,H) ≤ φ(t,H + ij). In particular,

when t = 1, w̄(H) ≤ w̄(H + ij).

Definition 7 A hierarchy H is maximal if any member in Nk is linked to any

member in Nk+1, for k = 1, 2, · · · , h− 1.

Adding links (with suitable adjustment of shares) means improving welfare,

therefore we should link all the unlinked workers in adjacent levels (if the partition

is fixed). In the end, we construct a maximal hierarchy, i.e, a multi-partition graph.

Thus, we have the following corollary.

Corollary 5.4 For hierarchies with N workers, the optimal hierarchy is a multi-

partition graph if the number of workers on each level is fixed.

For a maximal hierarchy, workers within each level are symmetric. As a spe-

cial case, for leading by example L(1,N−1), Hermalin (1998) shows that all N − 1

followers should get the same shares under optimal affine linear contracts. The

following proposition shows that this holds for general maximal hierarchies.

Proposition 5.5 For maximal hierarchies under optimal shares, members on the

same level are assigned the same shares, hence work equally hard in equilibrium.12

We still do not know exactly what the optimal shares are for any maximal

hierarchy. Nevertheless, these results show that we can reduce the number of

variables from N , the total number of workers, to h, the height of the hierarchy.

Starting from a multi-partition graph, we can split one level into multiple levels.

Figure 7 explains such a procedure. We claim that this procedure also improves

welfare after adjusting shares optimally.

Suppose H is a maximal hierarchy defined by the ordered partition P =

{N1, · · · , Nh} of N . Suppose |Nk| ≥ 2 for some k. Pick i ∈ Nk, and let H′ be

the maximal hierarchy defined by the ordered partition P ′ = {N1, · · · , Nk−1, {i},
Nk\{i}, · · · , Nh}.

12This result relies on c(x) = 1
2x

2. It may not hold for other cost functions.
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Figure 7: Splitting

Proposition 5.6 For fixed t ∈ (0, 1], we have:

φ(t,H) < φ(t,H′)

In particular, for t = 1, we have w̄(H) < w̄(H′). The new hierarchy constructed

by splitting is more efficient than the original one.

By repeated splitting until we have a partition that we cannot split at any

level, eventually, we get the chain. Here is a map presenting the procedures to

move from any hierarchy to the chain:

hierarchy H
add links︷︸︸︷

=⇒ maximal hierarchy
splitting︷︸︸︷

=⇒ chain (10)

Each step is welfare improving, which shows the optimality of the chain struc-

ture.

Theorem 5.7 Among all hierarchies, the chain structure is optimal.13

This theorem is the counterpart of Theorem 4.6 for simple hierarchies.

6 Extensions

6.1 Who will be a leader?

Previously, we have only compared the aggregate welfare of the whole team across

different hierarchies. In this section, we study an individual’s incentive in various

13This result depends crucially on the fact that we are picking the equilibrium given in The-
orem 5.1 for complicated hierarchies. Using other belief functions or picking other equilibria
may reverse the ranking. See the discussion in the appendix about belief functions with the V
structure. We do not have this problem when restricting attention to simple hierarchies.
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hierarchies. As an example, with equal shares, leaders contribute more to the

common project. Why should they do that? Who would ever want to a leader?

To answer this question, first we review some results from section 2.

Figure 8 compares the equilibrium payoffs of three workers in various hierar-

chies with equal share seq. The number to the right of each node is the payoff of

that node when θ = 1. SW denotes welfare when θ = 1.

(a) Team T3 (b) Lead by Example Λ (c) Chain C3 (d) V structure

Figure 8: Individual payoffs with different hierarchies

A general fact illustrated in the figure is that a leader’s equilibrium payoff is

actually lower than her followers. This is consistent with Corollary 4.5. Another

interesting observation is to compare the payoffs of the leader under the first three

hierarchies. The leader’s payoff in the Λ structure, 0.2222, is lower than he gets

in the team structure, 0.2778. But the leader’s payoff is higher in the chain, as

the middle player is now contributing more to the project. Meanwhile, given the

fact that a lump-sum transfer could be used to adjust individual payoffs without

affecting the incentives, thus equilibrium efforts, of workers, it is reasonable to

concentrate only on comparisons of aggregate welfare.

6.2 Limited Height

The previous analysis has shown that the chain is optimal among all hierarchies,

but the height of the chain is too large to be realistic when N is large. Here we

search for optimal hierarchies satisfying more realistic conditions, such as a con-

straint on the number of levels, being simple, and having a single leader. Formally,
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define

Ms(N,K, 1) = {H| H is simple, has height K and one leader}.

Here we look for the optimal hierarchy in Ms(N,K, 1).14

For K = 2, the program is trivial, since the only hierarchy satisfying all of the

three conditions is leading by example L(1,N−1). The optimal sharing rule for this

structure is completely solved in Hermalin (1998) for any N .

For K = 3, the problem gets tricky. For general N ≥ 3, K < N , Ms(N,K, 1)

is not a singleton. There could be a different number of middle managers, and

different groups of followers for each middle manager.

(a) H1 (b) H2

Figure 9: two hierarchical structures in Ms(N, 3, 1)

For example, if N = 1 + 2p is odd and p ≥ 2, Figure 9 presents two hierarchies

H1 and H2 in Ms(N, 3, 1). For H1, there are p managers, and each has only one

follower; for H2, there are only 2 managers, and each has p followers.

Proposition 6.1 Hierarchy H1 is more efficient than H2:

w̄(H1) = max
s∈∆N

w(s,H1) > max
s∈∆N

w(s,H2) = w̄(H2)

The intuition behind this proposition is as follows. Suppose share profile s is

optimal for H2 and let l be the share of the leader, L. Then we can construct a

14Equivalently, we could define the setMs(N,K, 1) by including all the hierarchies with height
at most K. The optimal element would be the same. The reason is that the constraint on height
must bind for the optimal hierarchy in Ms(N,K, 1), since it must use the maximum height, i.e,
K in this case.
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profile s′ for H1 as follows: L still gets l, while each manager gets m = 1
3

1−l
p

and

every terminal worker gets f = 2
3

1−l
p

. Note that g(m, f) = g(1
2
f, f) = f , so all

workers in H1 except L exert the same equilibrium effort. The sum of responsive

coefficients for those 2p workers is

p (g(m, f) + f) = 2pf =
4

3
(1− l)

We claim (with proof given in the appendix) that the sum of the responsive coef-

ficients of all workers in H2 except the leader L under the contract s is less than
4
3
(1− l), i.e,

4

3
(1− l) ≥

∑
j 6=L

kj(s,H2) (11)

or

f =
2

3

1− l
p
≥
∑

j 6=L kj(s,H2)

2p
.

Note η(k) := k − 1
2
k2 is concave in k and increasing if k < 1, so by Jensen’s

inequality, ∑
j 6=L

η(kj(s,H2)) = 2p

(∑
j 6=L

1

2p
η(kj(s,H2))

)

≤ 2p× η(

∑
j 6=L kj(s,H2)

2p
) ≤ 2p× η(f) (12)

The last inequality holds because
∑
j 6=L kj(s,H2)

2p
≤ f = 2

3
1−l
p
< 2

3
1
p
< 1. This shows

the contribution to welfare by all workers except L is higher in H1 than in H2.

The leader’s incentive is higher in H2, because her share under the two cases is the

same but the sum of the responsive coefficients of her followers is higher in H2 by

equation 11. The old trick applies. We reduce the share of L by ∆ > 0 to make

her incentive equal and then apply Theorem 4.9 to finish the proof.

The same argument can be used to show that hierarchy H1 is not only more

efficient than H2, but also more efficient than any other hierarchy inMs(N, 3, 1).

Proposition 6.2 If N = 1 + 2p is odd, p ≥ 2, and K = 3, then hierarchy H1 is

the most efficient in Ms(N,K, 1). That is,

w̄(H1) > w̄(H), ∀H ∈Ms(N,K, 1), H 6= H1
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6.3 Endogenous Information Acquisition

Previously, we have assumed that leaders are endowed with information, How

do the leaders get the information in the first place? Presumably, the leaders

exert costly research effort, such as sampling, running regressions, or consulting

experts, to get more accurate information about the state. In this section, we

study endogenous information acquisition in hierarchies.

For simplicity, assume H is simple, and there is a unique leader, L. She is the

only one who will acquire information. To study this extension, insert one more

stage between t = 0 (nature chooses θ) and t = 1 (the leader expends her effort

xL) in the game G(s,H):

• t = 0.5, the leader L exerts research effort I ∈ I = [I0, I1] and gets a signal s.

For each information structure I, θI ∼ EI{θ|s} is the posterior. Let F I be the

C.D.F of θI . Furthermore we assume:

1. The support of θI is Θ for any I ∈ I.

2. The utility of the leader is additively separable in both research effort and

productive effort.

3. For I < I ′, θI
′

is a mean-preserving spread (MPS) of θI .15

Condition 2 guarantees that the leader’s research effort does not affect his signaling

incentives. Risk-neutrality of workers and Condition 1 implies that the equilibrium

characterization still applies, except that now we have to replace the state by the

leader’s point estimate in Theorem 4.3. Condition 3 means that the label of the

information structure preserves the informativeness of the signal, that is, the higher

is I, the more spread is the distribution of θI .

If research effort is verifiable (so it can serve as a contract contingency), then

we only need to maximize expected social welfare of information minus the cost of

research effort:

U(H) := max
I∈I

max
s∈∆N

(∫
Θ

w(s,H)θ2dF I(θ)− r(I)

)
(13)

15Each θI necessarily has the same mean by the law of iterated expectations: E[θI ] =
E[E[θ|s]] = E[θ],∀I ∈ [I0, I1]. See Rothschild and Stiglitz (1970) for the formal definition
and properties of MPS.
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Here r(I) is the cost of research effort I. Assume r′ > 0, so a more accurate

signal is more expensive. For convenience, define v(I) :=
∫

Θ
θ2dF I(θ) as the

second moment of θI . Then condition 3 implies that v is monotone increasing in

I. Rewrite equation (13) as:

U(H) = max
I∈I

max
s∈∆N

(w(s,H)v(I)− r(I))

= max
I∈I

(w̄(H)v(I)− r(I))

Let I∗(H) be the maximizer (assume it is unique, for simplicity). Then for two

given hierarchies H and H′, if w̄(H′) > w̄(H), standard monotone comparative

statics results (Milgrom and Shannon 1994) imply that I∗(H′) ≥ I∗(H). Greater

marginal social value of information (w̄(s,H)) will induce higher research effort

by the leader. Moreover, we have U(H′) ≥ U(H). As a corollary of Theorem 4.6,

we can establish that the chain provides the greatest information acquisition and

welfare.

Theorem 6.3 Given assumptions 1-3 and verifiability of research effort, the chain

CN induces the highest research effort and yields the greatest expected welfare in

the extended game with endogenous information acquisition.

Now, we assume that we cannot write a contract contingent on the leader’s

research effort, either because research effort is not observable, or because it might

be observable but hard to verify in court. Then the leader’s research incentive

comes from his private value of information, which, in general, is lower than the

social value.

From Theorem 4.3, we know that the equilibrium payoff of the leader without

information cost is

πL(s,H) = θ2

(
sL(
∑
j∈N

kj)−
1

2
k2
L

)
=

1

2
θ2kL(s,H)2

which is monotonic in the leader’s equilibrium responsive coefficient. Also, the

leader’s equilibrium payoff does not depend explicitly on other workers’ efforts.

The second equality uses the properties of g and Theorem 4.3.
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The optimal contract is the solution to the following program:

Un(H) : = max
s∈∆N ,I∈I

(w(s,H)v(I)− r(I)) (14)

subject to: (IC-L) I ∈ arg max
I′∈I

1

2
kL(s,H)2v(I ′)− r(I ′)

Let sn∗(H) and In∗(H) be the solution. IC-L is the incentive compatibility condi-

tion for the leader’s research effort.

Theorem 6.4 Assume conditions 1-3 and that research effort is not verifiable.

Then the chain CN is still the most efficient hierarchy, even if we take the leader’s

research incentive into account. That is,

Un(CN) ≥ Un(H)

for any simple hierarchy H with a single leader.

This result is quite intuitive. Since the leader’s research incentive only depends

on her responsive coefficient, for any (s, I) which satisfies IC-L under H, we can

find a new contract s′ for CN such that kL(s′, CN) = kL(s,H), and w(s′, CN) ≥
w(s,H).16 In particular, the leader’s responsive coefficient is the same, so (s′, I)

satisfies IC-L under CN . Also, w(s′, CN) ≥ w(s,H), the marginal social value of

information is also higher under the chain. Therefore, the chain both gives the

leader higher incentive to acquire more accurate information and generates higher

marginal social value of information. Both forces move in the same direction, so

in the end, the chain wins.

Remark 3 If research effort is verifiable, then there is no conflict between choos-

ing optimal shares and incentivizing the leader for choosing the socially optimal

research effort, as one can see from equation 13. When research effort is not

verifiable, choosing optimal shares and incentivizing the leader for information ac-

quisition are in conflict.

In general, information is under-provided, i.e., In∗(H) ≤ I∗(H), because the

marginal private benefit of information from the perspective of L is lower than

16See proofs of Lemma 4.8 and Theorem 4.6 for the construction of s′.
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the corresponding social value (πL(s,H) < w(s,H)θ2 ≤ w̄(H)θ2). Of course,

the maximal obtainable welfare is lower if research effort is not verifiable, i.e.,

Un(H) ≤ U(H). Moreover, in general s∗n(H) 6= s∗(H), so we should modify the

shares s∗(H) to give the leader enough incentive for research. Nevertheless, the

chain is the best given all these inefficiencies. Other hierarchies perform even

worse.

6.4 Applications in fund-raising

A natural application of the model is charity fund-raising, which is similar to

public good provision. Vesterlund (2003) and Andreoni (2006) emphasize the

importance of leadership giving in charitable fund-raising, which serves as a signal

to other givers that the charity is of high quality. Using our terminology, they

show the superiority of sequential fund-raising, which corresponds to L(1,N−1),

over simultaneous fund-raising, which corresponds to TN .17

Given the optimality of the chain structure, a charity could raise more money

by implementing the chain CN , i.e., placing potential donors in a line and asking

them to donate one after the other. In particular, the charity should not reveal

the entire donation history to future givers. A drawback to the chain is that it

requires more steps to complete the fund-raising. If delay is costly to the charity,

the techniques and results of this paper might still be useful for suggesting better

ways to organize the fund-raising campaign. Rather than having each donor on a

separate tier, donors could be organized into subgroups, with the total donation of

each subgroup revealed only to the next tier. Smaller subgroups allow for a larger

number of tiers, thus raising more money, but also results in a longer delay. The

optimal configuration involves a trade-off between the costs of delaying and the

benefits of the funds. Carefully designed future experiments should be able to test

this theory in the field.

17For experimental evidence, see Protter et al., (2001,2005).
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7 Conclusion

This paper highlights the importance of hierarchical structures from the perspec-

tive of information flow and signaling effects associated with dissemination of in-

formation. In a team production framework, we show the optimality of the chain

structure from three perspectives: maximizing dynamic signaling effects, motivat-

ing efforts of all members, and providing strong incentives for the leader’s infor-

mation acquisition.

This paper isolates one feature, signaling effects, of organization design. In

reality, there are other forces, such as communication, adaptation and coordina-

tion, which are also relevant for the design of organizations. Also, I model leaders

as the source of information. There are many other features of leadership which

I have not addressed. For example, Bolton et al. (2008) show that a resolute

leader can achieve a better outcome for an organization faced with conflict be-

tween adaptation and coordination as a resolute leader overestimates the precision

of her prior belief and hence is less responsive to new information. They show

that the coordination benefit from a resolute leader generally outweighs the cost

of mal-adaptation.18 Adding these components into this model may balance the

signaling effect which is dominant in this paper, thus lead to more realistic predic-

tions about optimal hierarchies. Also, there might be other transaction costs, such

as delaying, or communication costs, associated with each hierarchy. A related

question is: Does the optimal hierarchy get longer and thinner, or the opposite,

as transaction costs drop? Adding these costs will shed some light on our under-

standing of real organizational design problems. A detailed analysis of these new

features requires another paper, and I plan to address these issues in the future.

Appendix

A Some Auxiliary Lemmas

A few technical lemmata are presented in this section, which may be skipped on

first reading. Proofs of these results are in the following sections.

The first lemma lists some properties of g.

18See Bolton et al. (2010) for a survey of key elements of leadership.
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Lemma A.1 Let g(x, y) =
x+
√
x2+4xy

2
, x > 0, y ≥ 0. Then:

1. (Definition) g2(x, y) = x(g(x, y) + y).

2. (Homogeneity) g(λx, λy) = λg(x, y), ∀λ ≥ 0, x ≥ 0, y ≥ 0.

3. (Monotonicity) g(x, y) is strictly increasing in x and y, and gy = x
2g−x ≤ 1 ≤

gx = g+y
2g−x .

4. (Bounds) x ≤ g(x, y) ≤ x+ y.

5. (Concavity) If x > 0, y > 0, then gxx < 0, gyy < 0 and gxy > 0.

6. (Special Values) g(x, 0) = x and g( y
1+n

, ny) = y,∀n, y.

The next three lemmata are used in the proof of Theorem 4.14.

Lemma A.2 If x ≥ 0, then x/2 ≤ g(x, g(x, t) + t) − g(x, t) ≤ x, ∀t ≥ 0. All

inequalities are strict if x > 0.

Lemma A.3 If k, y ≥ 0, then g(k/3, y + g(2k/3, y)) ≤ g(2k/3, y), with strict

inequality if y > 0 and k > 0.

Lemma A.4 Suppose 0 < k ≤ 1, y ≥ 0. Define two functions ã, a : [0, k]→ R as

follows:

ã(e) = g(k − e, g(e, y) + y), a(e) = g(e, y),

Let

A = ã+ a, M = ã− 1

2
ã2 + a− 1

2
a2

Then:

1. A(k) = A(0) < A(e),∀e ∈ (0, k), and M(k) = M(0) < M(e), ∀e ∈ (0, k).

2. A is strictly concave in e and A′(k
2
) > 0. Also, A′(2k

3
) < 0 if y > 0, A′(2k

3
) =

0 if y = 0; Therefore A′(e) > 0 if e ∈ [0, k
2
], A′(e) < 0 if e ∈ (2k

3
, k];

3. M ′(e) > 0 on [0, k
2
], while M ′(e) < 0 on (2k

3
, k].

4. If y = 0, then A′(2k
3

) = M ′(2k
3

) = 0, and 2k
3

is the unique maximizer of A

and M . If y > 0, then A′(2k
3

) < 0, and M ′(2k
3

) < 0.

Lemma A.5 Suppose f : [0,∞)→ R is continuous and differentiable, and f(0) =

0. If f ′(x) ≤ 0 whenever f(x) ≥ 0, then f(x) ≤ 0,∀x ≥ 0.
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A.1 Proof of Lemma A.1

Proof Most of the calculations are straightforward.

1. If x(1+ y
g
) = g, then g2 = x(g+y), or g2−xg−xy = 0, hence g =

x+
√
x2+4xy

2

(drop the negative solution as g > 0).

2. Trivial.

3. If x > 0, y > 0, then g is differentiable in (x, y). Differentiating the equation

g2 = x(g + y) with respect to x, we get 2ggx = g + y + xgx, hence gx = g+y
2g−x > 0.

Similarly, we have 2ggy = x(gy + 1), hence gy = x
2g−x > 0. Note x + y ≥ g (part

4 below), so g + y ≥ 2g − x, hence gx = g+y
2g−x ≥ 1. Similarly gy = x

2g−x ≤ 1 since

g ≥ x.

4. This follows from x = x+
√
x2+0
2

≤ g(x, y) =
x+
√
x2+4xy

2
≤ x+

√
x2+4xy+4y2

2
=

x+ y.

5. g(x, y) = xζ(y/x), where ζ(z) = 1+
√

1+4z
2

. It is easy to see that ζ ′′(z) < 0,

hence ζ is strictly concave. So, gyy = 1
x
ζ ′′(y/x) < 0 and gxy = − y

x2
ζ ′′(y/x) > 0,

and gxx = y2

x3
ζ ′′(y/x) < 0. Also gxxgyy − g2

xy = 0, therefore g is concave in (x, y).

6. Obviously g(x, 0) = x. Also, g(1, n(n+1)) =
1+
√

1+4n(n+1)

2
= 1+2n+1

2
= n+1.

By homogeneity of g, g( y
1+n

, ny) = y
1+n

g(1, n(n+ 1)) = y. �

A.2 Proof of Lemma A.2

Proof If x = 0, all terms vanish for any t ≥ 0, hence the result holds in this case.

If x > 0, by the Mean Value Theorem (MVT),

g(x, g(x, t) + t)− g(x, t) = (g(x, t) + t− t) gy(x, ζ)

for ζ ∈ (t, t + g(x, t)). Note g is concave in y, hence gy(x, ζ) < gy(x, t) = x
2g(x,t)−x

(Part 3, Lemma A.1). Therefore

g(x, g(x, t) + t)− g(x, t) < g(x, t)gy(x, t) = g(x, t)
x

2g(x, t)− x
= x

g(x, t)

2g(x, t)− x
.

Note g(x, t) ≥ x, hence g(x, t) ≤ 2g(x, t)− x, or equivalently g(x,t)
2g(x,t)−x ≤ 1. So,

g(x, g(x, t) + t)− g(x, t) < x
g(x, t)

2g(x, t)− x
≤ x · 1 = x
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For the other direction, note gy(x, ζ) > gy(x, g(x, t) + t) = x
2g(x,g(x,t)+t)−x , hence

g(x, g(x, t) + t)− g(x, t) >
xg(x, t)

2g(x, t+ g(x, t))− x

Simplifying this inequality, we have 19

g(x, g(x, t) + t)− g(x, t) >
x

2
>

xg(x, t)

2g(x, t+ g(x, t))− x
.

Combining both directions, we get the following chain of inequalities when x > 0:

xg(x, t)

2g(x, t+ g(x, t))− x
< x/2 < g(x, g(x, t)+t)−g(x, t) < x

g(x, t)

2g(x, t)− x
≤ x,∀t ≥ 0

(15)

Hence Lemma A.2 is proved. �

A.3 Proof of Lemma A.3

Proof If k = 0, then both sides equal zero for any y, hence the result holds.

If k > 0, by homogeneity of g, we have

g(
k

3
, g(

2k

3
, y) + y)− g(

2k

3
, y) =

k

3

(
g(1, g(2,

2y

k
) +

2y

k
)− g(2,

2y

k
)

)
So, it is sufficient to show the case for k = 3. To this end, it is equivalent to show

z(y) := g(1, g(2, y) + y)− g(2, y) < 0,∀y > 0.

Note z′(y) = gy(1, g(2, y) + y)(1 + gy(2, y))− gy(2, y). Substituting for the partial

derivative of g and simplifying, we have

z′(y) < 0⇐⇒ 2g(1, g(2, y) + y)− 1− g(2, y) > 0.

Note 2g(1, g(2, y) + y) = g(2, 2(g(2, y) + y)) > g(2, g(2, y) + y) > 1 + g(2, y),

∀y > 0, while the last inequality follows from Lemma A.2. So, z′(y) < 0,∀y > 0,

but z(0) = g(1, 2)−g(2, 0) = 2−2 = 0. Therefore, z(y) < 0,∀y > 0. That finishes

the proof of Lemma A.3. �

19 (g̃− g)(2g̃−x) > xg, hence 2g̃2− 2gg̃−xg̃ > 0, or g̃(2g̃− 2g−x) > 0. Thus 2g̃− 2g−x > 0
or g̃ − g > x/2. Here g̃ = g(x, g(x, t) + t).
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A.4 Proof of Lemma A.4

Proof The proof is given in four parts.

Part 1:

Since ã(0) = a(k) = g(k, y), ã(e) = a(k) = 0. Therefore A(k) = A(0), and

M(0) = M(k).

Suppose 0 < e < k. Then 20

A(e) = g(k − e, g(e, y) + y) + g(e, y) > g(k − e, y) + g(e, y)

≥ k − e
k

g(k, y) +
e

k
g(k, y) = g(k, y) = A(0).

For M , first simplify the expression using g2(x, y) = x(g(x, y) + y):

M(e) = ã(e)− 1

2
(k − e)(ã(e) + a(e) + y) + a(e)− 1

2
e(a(e) + y)

= (1− k

2
)(ã(e) + a(e)) +

1

2
eã(e)− 1

2
ky

= (1− k

2
)(ã(e) + a(e)) +

1

2

√
e2(k − e)(ã(e) + a(e) + y)− 1

2
ky

= (1− k

2
)A(e) +

1

2

√
e2(k − e)(A(e) + y)− 1

2
ky (16)

If 0 < e < k, then A(e) > A(0) > 0. Also
√
e2(k − e)(A(e) + y) is zero if e = 0,

or e = k and is positive ∀e ∈ (0, k). Hence M(e) > M(0).

Part 2:

For brevity, I use g̃ := g(k − e, g(e, y) + y), g := g(e, y). Then,

A′(e) = −gx(k − e, g(e, y) + y) + gy(k − e, g(e, y) + y)gx(e, y) + gx(e, y) = −g̃x + (1 + g̃y)gx

A′′(e) = g̃xx − g̃xygx + (−g̃yx + g̃yygx)gx + (1 + g̃y)gxx

Obviously A′′(e) < 0, because g̃xx < 0, g̃xy > 0, g̃yy < 0, gx > 0, g̃y ≥ 0, so A is

strictly concave. Notice that A(0) = A(k), hence A has a unique interior maximizer

on [0, k], which is given by the solution to A′(e) = 0. Note that

A′(e) > 0⇐⇒ gx >
g̃x

1 + g̃y

20 Note g(e, y) is concave in e with g(0, y) = 0, hence g(e,y)
e is weakly decreasing in e ∈ [0, k].
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From Lemma A.1, gx = g+y
2g−x ,

g̃x
1+g̃y

= g̃+g+y
2g̃

. Therefore,

gx =
g + y

2g − e
>

g̃x
1 + g̃y

=
g̃ + g + y

2g̃

⇐⇒ (g + y)2g̃ > (2g − e)(g̃ + g + y) = g̃(2g − e) + (g + y)(2g − e)

⇐⇒ g̃(2y + e) > (g + y)(2g − e) = 2g2 + g(2y − e)− ey

= 2e(g + y) + g(2y − e)− ey = g(2y + e) + ey

⇐⇒ (g̃ − g)(2y + e) > ey.

In the end, we have

A′(e) > (<)0⇐⇒ g̃ − g > (<)
ey

2y + e
(17)

When e = k
2
, g̃ − g = g(k/2, g(k/2, y) + y) − g(k/2, y) > k/4 by Lemma A.2.

Meanwhile ey
2y+e

= y
2y+e

e < 1
2
e = k/4. Therefore A′(k

2
) > 0. By concavity,

A′(e) > 0 if e ∈ [0, k
2
].

When e = 2k
3

, there are two cases. If y = 0, then g̃ = g(k/3, 2k
3

) = 2k
3

= g.

Therefore A′(2k
3

) = 0 by equation (17). If y > 0, A′(2k
3

) < 0 follows from

g̃ − g = g(k
3
, g(2k

3
, y) + y)− g(2k

3
, y) < 0, by Lemma A.3.

Therefore A′(2k
3

) < 0, if y > 0; A′(2k
3

) = 0, if y = 0.

Part 3:

By equation (16),

M ′(e) = (1− k

2
)A′(e) +

1

4
{e2(k − e)(A(e) + y)}−1/2{e2(k − e)(A(e) + y)}′

where {e2(k − e)(A(e) + y)}′ = e(2k − 3e)(A(e) + y) + e2(k − e)A′(e).
If e ∈ [0, k

2
], then A′(e) > 0 (by part 2) and 2k − 3e > 0, so {e2(k − e)(A(e) +

y)}′ > 0, hence M ′(e) > 0 on [0, k
2
]. Similarly, if e ∈ (2k

3
, k], then A′(e) < 0 (by

part 2) and 2k− 3e < 0, so {e2(k− e)(A(e) + y)}′ < 0. Thus M ′(e) < 0 on (2k
3
, k].

Part 4:

If y = 0, at e = 2k
3

, A′(2k
3

) = 0, so {e2(k− e)(A(e) + y)}′|e= 2k
3

= 0 (both A′(e) and

2k − 3e vanish at this point), therefore M ′(2k
3

) = 0. Also, in this case, if e < 2k
3

,

A′(e) > 0, hence M ′(e) > 0. If e > 2k
3

, then A′(e) < 0, hence M ′(e) < 0. Thus 2k
3

is the unique maximizer of both M and A on [0, k].
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If y > 0, then at e = 2k
3

, A′(2k
3

) < 0. Therefore {e2(k− e)(A(e) + y)}′|e= 2k
3
< 0

(note 2k−3e vanishes at this point), hence M ′(2k
3

) < 0. Moreover, M is decreasing

on (2k
3
, k] by part 3, so the maximizer of M is less than 2k

3
. �

A.5 Proof of Lemma A.5

Proof For ε > 0, let g(x) = f(x) − ε(1 + x). If g(x) ≥ 0, then f(x) ≥ 0, and

f ′(x) ≤ 0. Hence g′(x) = f ′(x) − ε < 0. We claim that g(x) ≤ 0 for all x ≥ 0.

Suppose g(x̄) > 0. Then let x̂ = inf{x ≥ 0|g(x) ≥ 0}. Note g(0) < 0, hence x̂ 6= 0.

Moreover g(x̂) = 0 and g(x) < 0 for ∀x < x̂. Therefore g′(x̂) ≥ 0. Also, g(x̂) = 0,

so g′(x̂) < 0, hence we get a contradiction. Therefore g(x) ≤ 0,∀x. This implies

f(x) ≤ ε(1 + x). This holds for any positive ε. Taking the limit as ε goes to zero,

we have f(x) ≤ 0,∀x. �

B Omitted Proofs

All omitted proofs are given in this section.

B.1 Proof of Theorem 4.1

Before the proof, we need an auxiliary lemma.

Lemma B.1 For a simple hierarchy H, the following are true:

A. {DF j : j ∈ Nk} is a partition of Nk+1, for k = 1, 2, · · · , h − 1; that is,

∪j∈NkDF j = N1+k and for j 6= i,DF j ∩DF i = ∅.

B. If i, j ∈ Nk and i 6= j, then F i ∩ F j = ∅.

C. For any two members i, j, there is at most one path from i to j.

Proof For A, the union of DF j is Nk+1 by part (b) of Definition 3. The disjoint-

ness of these sets follows from simplicity of the hierarchy. B and C follow from A

using induction. �

Proof of Theorem 4.1 If H is simple, then every worker except the leaders

has a unique predecessor, hence a unique source of information. Also, F i identifies
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the set of players whose beliefs can be influenced by i’s effort. Lemma B.1 shows

that if i, j ∈ Nk, then F i ∩ F j = ∅, i.e, i and j have no common followers, which

makes the equilibrium characterization much easier.

We are interested in separating equilibrium, in which any player’s effort reveals

his belief about the state. For each player i ∈ N , let x̃i : Θ → [0,+∞) denote

player i’s optimal effort given his belief about the state. The equilibrium condition

is that for any i,

x̃i(θ) ∈ arg max
xi∈R+

siθ

xi +
∑
j∈F i

x̃j(x̃
−1
i (xi)))

− c(xi). (18)

The first-order condition for equation 18 is

siθ

1 +
∑
j∈F i

x̃′j(x̃
−1
i (xi))

x̃′i(x̃
−1
i (xi))

− c′(xi) = 0, when xi = x̃i(θ).

Note x̃−1
i (xi) = θ if xi = x̃i(θ). Simplifying the above expression, we get:

siθ

1 +
∑
j ∈ F i

x̃′j(θ)

x̃′i(θ)

 = c′(x̃i(θ)).

This must hold for any θ ∈ Θ, which is just equation 2. �

Remark 4 In equation 18, we only consider the contributions of players in F i

and i, but ignore the contributions of others workers. The reason is other workers

cannot be influenced by i’s effort, hence their contributions only affect i’s equilib-

rium payoff and do not affect i’s incentive for signaling. By Lemma B.1, we can

isolate player i’s problem from other players on the same level because they have

disjoint sets of followers.

Remark 5 In general, we need to specify initial conditions to solve for ordinary

differential equations. We do not need to do so here because x̃i(0) = 0,∀i ∈ N is

implicitly implied by equation 2 by setting θ = 0. If min Θ = θ > 0, then the initial

condition for equation 2 (see Mailath, 1987) is fixed by requiring that the “worst”

type, θ, get his maximal utility given that he is identified as the worst type; in other

words, x̃i(θ) = c′−1(siθ). In general, no explicit solutions exist when θ > 0 even

with quadratic disutility function.
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B.2 Proof of Lemma 4.8:

Part 1 Let ρ be the inverse map of σ. Then ρ is also a permutation of N . It

suffices to show:

(+) kρ(i)(s, Cσ(N )) ≥ kρ(i)(s,H),∀i ∈ N

We prove (+) by induction on i from bigger i to smaller i.

For i = N , we know that ρ(N) is the worker on the last level, hence has no

followers in the chain. So σ(ρ(N)) = N ≥ σ(i),∀i. Therefore ρ(N) has no

follower under H. Thus, kρ(i)(s, Cσ(N )) = sρ(N) = kρ(i)(s,H).

Suppose (+) holds for all i greater than or equal to K. If i = K − 1, then

by Theorem 4.3

kρ(K−1)(s,H) = g

sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H)


By monotonicity of σ, we have

F ρ(K−1) ⊂ {j|σ(j) > σ(ρ(K − 1) = K − 1} = {j|σ(j) ≥ K} = {ρ(l)|l ≥ K}.

Therefore,

kρ(K−1)(s,H) = g

sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H)


≤ g

(
sρ(K−1),

∑
l≥K

kρ(l)(s,H)

)

≤ g

(
sρ(K−1),

∑
l≥K

kρ(l)(s, Cσ(N ))

)
(by induction)

= kρ(K−1)(s, Cσ(N ))

Therefore, (+) holds for K−1. By induction, (+) holds for any i = 1, · · · , N .

Part 2 We construct s̃ step-by-step to satisfy the following conditions:

(++) kρ(i)(̃s, Cσ(N )) = kρ(i)(s,H), ∀i ∈ N
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For i = N , let s̃ρ(N) = sρ(N). Note ρ(N) has no followers under H or Cσ(N ), so

in this case, kρ(N)(̃s, Cσ(N )) = s̃ρ(N) = sρ(N) = kρ(i)(s,H). So (++) holds for

i = N .

Suppose we have constructed s̃i for all i ≥ K. Define ε ≥ 0 such that:

g

sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H)

 = g

(
sρ(K−1) − ε,

∑
l≥K

kρ(l)(s,H)

)
.

This ε always exists by continuity of g, because the right hand side is bigger

than the left hand side if ε = 0, and the right hand side is zero if ε = sρ(K−1).

Let s̃ρ(K−1) = sρ(K−1) − ε ≤ sρ(K−1). Then

kρ(K−1)(s,H) = g(sρ(K−1),
∑

j∈F ρ(K−1)

kj(s,H))

= g(sρ(K−1) − ε,
∑
l≥K

kρ(l)(s,H))

= g(s̃ρ(K−1),
∑
l≥K

kρ(l)(̃s, Cσ(N ))) by induction

= kρ(K−1)(̃s, Cσ(N ))

Therefore, (++) holds for i = K − 1. The results follow by induction. �

B.3 Proof of Theorem 4.9

Proof Suppose s = {si, i ∈ N} is optimal for φ(t2,H) (an optimum always exists

by continuity of w(s,H) and compactness of ∆N). Note
∑

i∈N si = t1 < t2 and let

∆ = t2−t1 > 0. Choose one terminal worker, say b. Suppose his share is sb ∈ [0, t1].

Obviously, b has no followers. Let P b be the set of b’s predecessors. Also, we have

to remove the workers with zero shares, so define M = {j ∈ P b|sj > 0}. It is easy

to see that kj(s,H) is strictly increasing in sb if j ∈M .

Let ê = ∆ +
∑

j∈M sj > 0. We claim that:

Claim B.2 There exist functions {fj, j ∈M} defined on e ∈ [0, ê] such that:

(1) ∀j ∈M , fj is continuous and nonnegative in e with fj(0) = 0.

(2) sj − fj(e) > 0.
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(3) kj(s̃(e)) = kj(s), j 6= b, and kb(s̃(e)) = sb+e, where s̃(e) is the shares derived

from s by adjusting sb → sb + e and sj → sj − fj(e), j ∈M , and keeping all

other workers’ shares fixed.

If this claim is true, then define η(e) = ∆ − e +
∑

j∈M fj(e), e ∈ [0, ê]. Notice

that the summation of shares for s̃(e) is

|s̃(e)| =
∑
i∈N

sj + e−
∑
j∈M

fj(e) = t1 + e−
∑
j∈M

fj(e) = t1 + ∆− η(e) = t2 − η(e),

which varies with e. Also, η(0) = ∆− 0 + 0 > 0, and

η(e) = ∆− e+
∑
j∈M

fj(e) ≤ ∆− e+
∑
j∈M

sj (note fj(e) < sj)

Therefore η(e) < 0 if e > ∆ +
∑

j∈M sj = ê. By the Mean Value Theorem, there

exists e such that η(e) = 0. Let ē = min{e ≥ 0|η(e) = 0}; this number exists and

is finite.

For e ∈ [0, ē), η(e) > 0, hence |s̃(e)| = t2 − η(e) ≤ t2 ≤ 1. The responsive

coefficients of all workers except b are the same under s̃(e) by part 3 Claim B.2,

and kb(s̃(e)) = sb + e (b has no followers), which is increasing in e.

∂w(s̃(e),H)

∂e
=

∂

∂e
{sb + e− 1

2
(sb + e)2} = 1− (sb + e) > 1− |s̃(e)| ≥ 1− t2 ≥ 0

Therefore, the aggregate welfare w(s̃(e),H) is strictly increasing as we increase

e ∈ [0, ē], while for e = 0, s̃(0) = s, and for e = ē, |s̃(ē)| = t2 − η(ē) = t2 − 0 = t2.

In the end, we have:

φ(t1,H) = w(s,H) = w(s̃(0),H)

< w(s̃(ē),H) ≤ max
s≥0,

∑
sj=t2

w(s,H) = φ(t2,H)

which completes the proof of Theorem 4.9. �

Proof of Claim B.2 We can construct these functions step-by-step. For each

e ≥ 0, j ∈M , define fj(e) as the unique solution to the following

g(sj, e+
∑
l∈F j

kl) = g(sj − fj(e),
∑
l∈F j

kl)
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The solution fj(e) exists and is unique by continuity of g and the fact that j ∈M
and sj > 0. Also, fj is continuous by the implicit function theorem.

Last, we need to check the three conditions in Claim B.2. Parts 1 and 2 are

obviously true by construction. For part 3, we prove this by induction on the level

of members.

If j ∈ Nh, then kj(s̃(e)) = s̃j(e) = sj if j 6= b, and kb(s̃(e)) = s̃b(e) = sb + e.

Suppose part 3 holds for any member on levels higher than K. Suppose j ∈ NK−1.

There are two cases.

(1) Suppose j ∈M . Hence j ∈ P b, and b ∈ F j. Then

kj(s̃(e)) = g(sj − fj(e),
∑
l∈F j

kl(s̃(e)))

= g(sj − fj(e), kb(s̃(e)) +
∑

l∈F j ,l 6=b

kl(s̃(e)))

= g(sj − fj(e), sb + e+
∑

l∈F j ,l 6=b

kl(s)) (by induction)

= g(sj − fj(e), e+
∑
l∈F j

kl(s)) = g(sj, e+
∑
l∈F j

kl) (by definition of fj(e))

= kj(s)

The fourth equality follows by induction, since the set F j must lie on a higher

level than j.

(2) If j /∈M , then b /∈ F j. Then

kj(s̃(e)) = g(sj,
∑
l∈F j

kl(s̃(e))) = g(sj,
∑
l∈F j

kl(s)) = kj(s)

By induction, part 3 holds for any member j. �

This example shows that the result is not as obvious as it appears.

Example 5 There exists a hierarchy H and two shares s, s′ with s′ ≥ s, but

w(s,H) > w(s′,H).

For the chain A → B → C with sA = 0.8, sB = sC = 0.1, we have kA(s, C3) =

1.00782 > 1. Reduce the share of sA by 1%, which will reduce kA to 0.99737

without affecting kB, kC . Note 0.99737 − 1
2
0.997372 > 1.00782 − 1

2
1.007822. The

new shares add up to only 99%, but yield higher aggregate welfare. The problem

is that the shares are not optimally adjusted as we did in Theorem 4.9.
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B.4 Proof of Lemma 4.11

Proof For the chain, the responsive coefficients ki and ki+1 are related by the

following:

ki − ki+1 = g(x, g(x, t) + t)− g(x, t)

where x = 1
N
> 0, t =

∑
j>i+1 kj ≥ 0. By Lemma A.2, ki − ki+1 lies between x/2

and x, in other words, 1
2N

< ki − ki+1 <
1
N
, i = 1, · · · , N − 1. Taking summations,

we have:
N + 1− i

2N
< ki <

N + 1− i
N

i = 1, · · · , N − 1

which completes the proof of Lemma 4.11. �

B.5 Proof of Proposition 4.12

Proof Based on the estimates of ki from Lemma 4.11, we have:

N∑
k=1

(
N + 1− i

2N
− 1

2
(
N + 1− i

2N
)2

)
≤ w(seq, CN) =

N∑
k=1

(ki −
1

2
k2
i )

≤
N∑
k=1

(
N + 1− i

N
− 1

2
(
N + 1− i

N
)2

)
Simplifying the terms, we get

(1 +N)(−1 + 10N)

48N
≤ w(seq, CN) ≤ (1 +N)(−1 + 4N)

12N

Therefore
5

24
N +

1

6
≤ w(seq, CN) ≤ 1

3
N +

1

4
For a large team with equal shares, w(seq, CN) grows at least linearly in N . �

B.6 Proof of Proposition 4.13

Proof This proof is quite similar to the proof of Lemma 4.11.

For the chain structure, the the responsive coefficients ki and ki+1 are related by

the following:

ki − ki+1 = g(x, g(y, t) + t)− g(y, t)

= (g(x, g(y, t) + t)− g(y, g(y, t) + t))︸ ︷︷ ︸
I

+ (g(y, g(y, t) + t)− g(y, t))︸ ︷︷ ︸
II
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where x = si, y = si+1, t =
∑

j>i+1 kj. Note that x ≤ y and t ≥ 0 by assumption.

The first term I = g(x, g(y, t) + t) − g(y, g(y, t) + t) = (x − y)gx(ζ, g(y, t) + t)

for some ζ by the Mean Value Theorem. Note gx ≥ 1 and x − y ≤ 0, so I ≤
(x − y)gx(x, ζ) ≤ (x − y). The second term II = g(y, g(y, t) + t) − g(y, t) ≤ y

by Lemma A.2. Therefore, ki − ki+1 = I + II ≤ (x − y) + y = x = si. Taking

summations, we have

ki ≤
∑
j≥i

(kj − kj+1) ≤
∑
j≥i

sj

Note the sum of all shares is one, so ki ≤ 1.

If all the shares si are positive, then the second term II < y = si+1, which implies

ki − ki+1 < si, therefore ki < 1. �

B.7 Proof of Theorem 4.14

Proof The proof consists of two steps.

Step 1: Proof that
s∗i
s∗i+1
∈ [0.5, 1)

Suppose s∗ is optimal for the chain. We want to prove that
s∗i
s∗i+1
∈ [0.5, 1) for any

i. Let k = s∗i + s∗i+1, e = s∗i+1. Then it is easy to see that

s∗i
s∗i+1

∈ [0.5, 1)⇐⇒ e

k
=

1

1 +
s∗i
s∗i+1

∈ (
1

2
,
2

3
]

We prove this is true by contradiction.

Suppose e
k
∈ [0, 1

2
], or e ∈ [0, k

2
]. Then from Lemma A.4 we have A′(e) >

0,M ′(e) > 0. So for small δ > 0, the following two conditions hold:

A(e+ δ) > A(e) and M(e+ δ) > M(e) (19)

Hence we can define the new shares ŝ by moving δ from i to i+ 1 in s∗. Obviously,

this will not change the incentives of workers after i + 1. Also by equation (19),

the new shares ŝ satisfy:

k̂l = kl, l > i+ 1 (20)

k̂i + k̂i+1 > ki + ki+1, (21)

k̂i −
1

2
(k̂i)

2 + k̂i+1 −
1

2
(k̂i+1)2 > ki −

1

2
(ki)

2 + ki+1 −
1

2
(ki+1)2 (22)

52



By induction, we also have k̂l > kl, l < i.

Because we do not know the range of k̂l, we cannot argue that w(ŝ, CN) >

w(s∗, CN). Instead, we apply the same trick as before: we reduce the share of i− 1

by a suitable amount εi−1 ≥ 0 such that

g(si−1 − εi−1, k̂i + k̂i+1 +
∑
j>i+1

k̂j) = g(si−1, ki + ki+1 +
∑
j>i+1

kj)

This is always feasible by continuity of g and equation (21). Then do the same

operations for player i − 2, i − 3 through player 1 such that their responsive

coefficients for the reduced shares are the same as those with s∗. Call s̃ the reduced

share profile. Then |s̃| = β < 1 by construction. Therefore, w(s̃, CN) > w(s∗, CN)

by equation (22). On the other hand,

w(s̃, CN) ≤ φ(β, CN) ≤ φ(1, CN) = w(s∗, CN)

So we get a contradiction. Hence it is impossible to have e ∈ [0, k
2
].

Similarly, it is impossible to have e
k
∈ (2

3
, 1] by using Lemma A.4 to get a

contradiction.

For the last two workers, we can even show that sN−1 = 1
2
sN . If this is not

the case, then we can move part of the share from one worker to the other such

that the ratio is 1/2. Notice that in this case we will have A(2k/3) > A(e), and

M(2k/3) > M(e) (Part 4 of Lemma A.4). We get a contradiction by using the

same method as above.

Step 2: Proof that k1 > k2 > · · · > kN−1 = kN

Notice that s∗N−1 = 0.5s∗N , so kN−1 = g(0.5s∗N , s
∗
N) = s∗N = kN .

For any other pair of players {si, si+1}, i 6= N − 1, let k = si + si+1, ē = si+1. If

ki ≤ ki+1, then g̃ − g = ki+1 − ki ≤ 0, and ēy
2y+ē

> 0 (y > 0 in this case because

i+ 1 is not the terminal worker). Therefore

A′(ē) < 0, or ã′(ē) + a′(ē) < 0

by equation 17. Also, by monotonicity of si in Step 1 and Proposition 4.13 we

have ki ≤ ki+1 < 1, therefore 1 > a(ē) ≥ ã(ē). Then

M ′(e) = (1−ã(e))ã′(e)+(1−a(e))a′(e) = (1−ã(e))(ã′(e)+a′(e))+(ã(e)−a(e))a′(e)
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which is strictly negative at e = ē, since (1− ã(ē))(ã′(ē) + a′(ē)) < 0, and (ã(ē)−
a(ē))a′(ē) ≤ 0. Therefore we have shown that

A′(ē) < 0, and M ′(ē) < 0

This means that we can reduce si+1 by a small amout δ > 0, and increase si by

the same amount δ, such that:

A(ē− δ) > A(ē), and M(ē− δ) > M(ē)

The same procedure can be used to get a contradiction. So ki > ki+1 for ∀i 6= N−1.

Hence, the proof is complete. �

B.8 Proof of Theorem 5.1

Proof We want to show that the linear functions given by Theorem 5.1 are part

of a separating equilibrium with the pessimistic belief assumption. For brevity, let

ki = ki(s,H). Now fix a player i ∈ Nk. If k = h, i.e., i is a terminal worker, then

obviously ki = si. Now suppose k < h. Let F i be the set of followers of i. There

are two possible deviations for i, upward and downward.

If i deviates downward (we only consider one player deviating, so all other

workers on level k are “telling the truth”), then all the players in F i will use i’s

effort to update beliefs by the pessimistic belief assumption and choose efforts

accordingly. No profitable downward deviating means that:

kiθ ∈ arg max
x≤kiθ

siθ

x+
∑
j∈F i

kj(
x

ki
)

− 1

2
x2

Using the first order condition, this is equivalent to

siθ(1 +
∑
j∈F i

kj
ki

) ≥ kiθ ⇐⇒ ki ≥ g(si,
∑
j∈F i

kj)

Clearly ki = g(si,
∑

j∈F i kj) satisfies the condition above (this is actually an equal-

ity in this case).

If i deviates upward, the situation is a little bit different, as not all the followers

will “listen to” i’s effort. Let

F i
c = {j ∈ F i|there is no path from l to j for l ∈ Nk, l 6= i}.
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These workers will follow i because they cannot detect i’s upward deviation as i is

the only source of information for them. The workers in F i\F i
c will not be affected

by i’s upward deviation as they get at least one other signal saying that the state

is θ. Thus, no profitable upward deviation means that:

kiθ ∈ arg max
x≥kiθ

siθ

x+
∑
j∈F ic

kj(
x

ki
)

− 1

2
x2

Using the first order condition, this is equivalent to

siθ(1 +
∑
j∈F ic

kj
ki

) ≤ kiθ ⇐⇒ ki ≥ g(si,
∑
j∈F ic

kj)

Obviously, ki = g(si,
∑

j∈F i kj) ≥ g(si,
∑

j∈F ic
kj) satisfies this condition, as F i

c ⊂
F i.

Combing these two results, we have shown that kiθ is i’s best response given

all the other players’ best responses, thus we have verified that it is part of a sep-

arating equilibrium supported by pessimistic beliefs. �

Remark 6 As we have seen implicitly in the above proof, any number in the

interval [g(si,
∑

j∈F ic
kj), g(si,

∑
j∈F i kj)] is a possible choice for i’s equilibrium re-

sponsive coefficient. We choose the largest one in that interval. The same thing

happens in the V structure (Section 2). I conjecture that the equilibrium efforts

characterized in Theorem 5.1 are the upper bounds of equilibrium efforts among all

separating equilibria supported by pessimistic beliefs as I show for the V structure

in section 2.

B.9 Proof of Theorem 5.3

Proof Suppose s is optimal for φ(t,H), i.e., φ(t,H) = w(s,H). We claim that

there exists a contract s′ such that w(s,H) = w(s′,H + ij) and s′ ≤ s. Then the

proposition follows directly from this claim and Theorem 4.9.

To show the claim, first we claim that there exists a δ ≥ 0 such that:

g(si,
∑
t∈F i

kt(s,H)) = g(si − δ,
∑
t∈F ia

kt(s,H))
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Here F i
a is the set of i’s followers in H + ij, which is larger than F i because a

link from i to j was added. The existence of δ follows from continuity of g. By

induction, we can keep weakly reducing all players on the top of l while keeping

their incentives the same under the two hierarchies. As everyone has weakly more

followers after adding the link, we can always do that. In the end, let s′ be the

resulting new contract. Then s′ ≤ s. Also, by construction:

kl(s,H) = kl(s
′,H + ij),∀l ∈ N .

So w(s,H) = w(s′,H + ij). That establishes the claim. �

B.10 Proof of Proposition 5.5

Proof Let t1, t2, · · · , tnk be the shares of workers on the same level, say Nk, in an

optimal contract s. Let y =
∑

l>k

∑
j∈N l kj. Then by Theorem 4.3, the responsive

coefficients of these nk members are given by g(ti, y), and the contribution to

welfare by these workers is

G(t1, · · · , tnk) :=

nk∑
i=1

{
g(ti, y)− 1

2
g(ti, y)2

}
Define F (t1, · · · , tnk) :=

∑nk
i=1 {g(ti, y)} as the sum of the responsive coefficients.

We prove the proposition by contradiction.

If tm 6= tn for m 6= n, then let s =
∑nk
i=1 ti
nk

be the new equalized share for members

in Nk. We claim that

G(t1, · · · , tnk) < G(s, · · · , s) and F (t1, · · · , tnk) < F (s, · · · , s) (23)

Note g(t, y) is strictly concave in t (Lemma A.1), so

F (t1, · · · , tnk) = nk

nk∑
i=1

{
1

nk
g(ti, y)

}
< nk

{
g(

∑nk
i=1 ti
nk

, y)

}
= nkg(s, y) = F (s, · · · , s)

by Jensen’s inequality.

Similarly, g(t, y)− 1
2
g(t, y)2 = (1− 1

2
t)g(t, y)− 1

2
ty is concave in t because

(g(t, y)− 1

2
g(t, y)2)′′ = (1− 1

2
t)gxx(t, y)− gx(t, y) < 0
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Here t < 1, 1 − 1
2
t > 0, gxx < 0, gx > 0. By the same logic, we can show

G(t1, · · · , tnk) < G(s, · · · , s).
For Equation (23), we can get a similar contradiction as shown in the proof of

Theorem 4.14. We do not repeat the argument here. �

B.11 Proof of Proposition 5.6

Proof Let s be the optimal share profile for φ(t,H). We compare the coefficients

ki for s under H and H′. The incentives of workers in Nk+1, · · · , Nh and Nk\{i}
are obviously the same in both cases. Worker i’s incentive is different because i

has more followers, so

k′i(s,H′) = g

si, ( ∑
j∈Nk\{i},

kl(s,H′)) + y

 > ki(s,H′) = g(si, y)

where y =
∑h

l=k+1

∑
j∈N l kj(s,H). Therefore, we can reduce the share of si by a

small amount δ > 0, such that

g

si − δ, ( ∑
j∈Nk\{i},

kl(s,H′)) + y

 = ki(s,H′) = g(si, y)

With this reduction, the incentives for workers in Nk are also the same as before.

Then by induction, the responsive coefficients for workers in Nk−1, · · · , N1 are also

the same. Therefore, we can find a share profile for H′ that uses less total share

(adds up to 1 − δ) and yields the same welfare. Extra share is welfare improving

by Theorem 4.9, hence φ(t,H) < φ(t,H′). �

B.12 Proof of Equation 11 and Proposition 6.2

Proof: Once we have equation 11, Proposition 6.2 follows from a similar argument.

So, it suffices to show equation 11 holds for any hierarchy in Ms(N,K, 1).

Suppose H ∈Ms(N,K, 1). Take any middle manger, say M with his q follow-

ers. Suppose shares of the middle manager and his followers are u, v1, v2, · · · , vq.
Then we claim that:

(†) g(u,

q∑
i=1

vi) +

q∑
i=1

vi ≤
4

3
(u+

q∑
i=1

vi)
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Taking summation over all the middle level workers, then the right hand side

will be 4
3

times the sum of shares of 2p followers, which is exactly 4
3
(1 − l). The

left hand side will be the sum of the responsive coefficients of those 2p workers.

That is exactly equation 11. Inequality (†) follows from

g(x, y) + y ≤ max
t∈[0,x+y]

g(x+ y − t, t) + t = g(x+ y − t, t) + t|t= 2
3

(x+y) =
4

3
(x+ y),

while the equality in the middle follows from part 4 of Lemma A.4.

If any middle level worker has more than one follower, then either equation 11

is strict, or equation 12 is strict. In this case we have a strict welfare comparison,

which shows that H1 is the most efficient hierarchy in Ms(N,K, 1). �

Remark 7 The proof also shows that to achieve the highest welfare under H1, we

must assign m = 1−l
3p

to each manager and f = 2(1−l)
3p

to each terminal worker, and

l to the leader for some l ∈ (0, 1). The only unknown variable is the number l.

The optimal l can be determined by solving the corresponding welfare maximization

program.

C Additional Materials

C.1 Adding Links is Not Always Welfare Improving

Take a hierarchy as shown in figure 10a, in which A and B9 are on level 1, and

Bj are on level 10 − j for each j. Their shares are: sA = 91% and sBi = 1%, i =

1, · · · , 9. The responsive coefficients kBi are: {0.01, 0.016, 0.022, 0.027, 0.033, 0.038,

0.043, 0.049, 0.054}, and kA = sA = 0.9. If one additional link is added from

A to B8 as shown in Figure 10b, then A’s responsive coefficient under the new

structure is k̃A = g(0.9,
∑8

i=1 kBi) = 1.10688, which is further away from kFB = 1

than kA = 0.9. Moreover, this transformation only affects the incentive for A; the

equilibrium efforts for other members are not affected. Therefore the aggregate

welfare of the new hierarchy with this additional link is actually lower than the

original one. This is not inconsistent with Theorem 5.3 because we have not

adjusted the shares optimally here.
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(a) old hier-
archy

(b) new hier-
archy

Figure 10: A counterexample: adding links is not always welfare improving.

C.2 More About Belief Functions in V Structure

We explore more possible belief functions in the V structure in this subsection.

Unlike the analysis with the chain structure, conditions (P1′), (P2′), (B′) are not

enough to uniquely pin down the equilibrium efforts in this case. In general,

different belief functions can support different equilibrium efforts, and one belief

function can support multiple equilibria.

Definition 8 Given a belief function β satisfying B′, we say e1, e2 are supported

by β if e1, e2 and β satisfy conditions S, P1′, P2′.

To find equilibria, it suffices to find functions e1, e2 that can be supported by

a given β. In the following examples, we list some special belief functions and find

the effort functions that can be supported by each.

The first one is the one used in the paper.

1. Pessimistic belief

βp(θ1, θ2) = min(θ1, θ2) (24)

In this case, using FOC, we can rewrite P1′, P2′ as:

∀θ, θ
3
≤ ei(θ) ≤

θ

3

(
1 +

1

3e′i(θ)

)
, i = 1, 2. (25)

There are multiple solutions to equation 25. For example, ei(θ) = kiθ, for

any ki ∈ [1
3
, 1+

√
5

6
], i = 1, 2. Nevertheless, the solutions to equation 25 are

bounded in the following sense.
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Lemma C.1 If ei is monotonic and satisfies equation 25, then

∀θ, e(θ) ≤ ei(θ) ≤ ē(θ)

Here, ē(θ) := g(1
3
, 1

3
)θ and e(θ) := θ

3
are defined in section 2. So, ē(θ) and e(θ)

are the upper and lower bounds for the solutions to equation 25. Moreover,

both ē(θ) and e(θ) satisfy equation 25.

2. Trigger belief

βt(θ1, θ2) =

{
θ1 if θ1 = θ2

0 otherwise
(26)

In this case both leaders have the same information about the state. If

any leader deviates, F will detect it and choose zero effort under this belief

assumption. Moreover, P1′, P2′ are equivalent to:(
ei(θ)−

1

3
θ

)2

≤ 2

9
θ2, i = 1, 2. (27)

In particular, ei(θ) = kiθ, for any ki ∈ (0, 1+
√

2
3

], i = 1, 2 will satisfy these

conditions. Not all solutions to the above equations are linear.

3. Weighted belief

βw1,w2(θ1, θ2) = w1θ1 + w2θ2 (28)

for 0 ≤ wi ≤ 1, w1 + w2 = 1. Under this belief, P1′, P2′ can be written as:

θ

3

(
1 +

wi
3e′i(θ)

)
= ei(θ), i = 1, 2.

The solutions to this differential equation are linear in θ, and given by

ei(θ|wi) = g(
1

3
,
wi
3

)θ, i = 1, 2. (29)

Note that e and ē are special cases with wi = 0, and wi = 1. But, this

belief function cannot support ei = e,∀i or ei = ē,∀i, because otherwise

w1 + w2 6= 1.

Not every specification of β is consistent with equilibrium, as the next ex-

ample shows.
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4. Optimistic belief

βo(θ1, θ2) = max(θ1, θ2) (30)

In this case, P1′, P2′ can be written as:

θ

3
≥ ei(θ) ≥

θ

3

(
1 +

1

3e′i(θ)

)
, i = 1, 2.

Note that θ
3
< θ

3

(
1 + 1

3e′i(θ)

)
. These two inequalities are inconsistent, hence

there is no separating equilibrium with optimistic belief.

The trigger belief βt can generate not only very efficient outcomes, for example

ei(θ) = 1+
√

2
3
θ, i = 1, 2, but also very inefficient ones, for example ei(θ) = εθ, i =

1, 2 for arbitrarily small ε > 0. A unsatisfactory fact about βt is that it has jumps

and it is not monotonic in θ1, θ2. For βp, and βw1,w2, the equilibrium efforts of

both leaders are at least θ
3
.

Sometimes, the following restrictions are natural to assume.

(BDM) β is continuous, differentiable and monotonic in θ1, θ2

With this assumption (BDM), P1′ and P2′ can be replaced by the corresponding

FOCs.

θ

3

(
1 +

βi(θ, θ)

3e′i(θ)

)
= ei(θ), i = 1, 2 (31)

where βi = ∂β
∂θi

. For any β satisfying (BDM), we can find an equilibrium by solving

the differential equations (31). Although the solutions are in general different for

different βs, nevertheless, we claim:

Claim C.2 All solutions to equation 31 satisfy equation 25.

Proof Differentiating both sides of β(θ, θ) = θ gives β1(θ, θ) + β2(θ, θ) = 1. Note

β is monotonic, so βi(θ, θ) ≥ 0. Therefore 0 ≤ βi(θ, θ) ≤ 1. By equation 31,

θ

3
=
θ

3

(
1 +

0

3e′i(θ)

)
≤ ei(θ) =

θ

3

(
1 +

βi(θ, θ)

3e′i(θ)

)
≤ θ

3

(
1 +

1

3e′i(θ)

)
which is exactly equation 25. �

This immediately yields the following result.
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Proposition C.3 If {ei, i = 1, 2} can be supported by a belief function β satisfying

(BDM), then {ei, i = 1, 2} can also supported by pessimistic belief βp.

Of course, β is part of the equilibrium. In general, we cannot impose assump-

tions on the endogenous belief functions. We believe that (BDM) is satisfied by

a large class of belief functions, although βt, βp violate (BDM). Moreover, we can

show that Proposition C.3 also holds for β satisfying a weaker differentiability con-

dition than (BDM): existence of left and right derivatives (not necessarily equal).

In particular, pessimistic belief βp satisfies this weaker condition. In the text we

argued that assuming βp as the out-of-equilibrium belief of F makes some sense.

In section 2, we found the upper and lower bounds on the corresponding welfare

with βp. By Proposition C.3, these upper and lower bounds hold for any belief

satisfying (BDM) or a weaker differentiability condition.21

Proof of Lemma C.1

Proof It is easy to see that ei(θ) ≥ θ
3
. If ei(θ) ≥ g(1

3
, 1

3
)θ, then equation 25

implies g(1
3
, 1

3
) ≤ ei(θ)

θ
≤ 1

3

(
1 + 1

3e′i(θ)

)
. Equivalently, e′i(θ) ≤ g(1

3
, 1

3
). Let f(θ) =

ei(θ) − g(1
3
, 1

3
)θ. So f ′(θ) ≤ 0 whenever f(θ) ≥ 0. Also ei(0) = 0, so f(0) = 0.

Lemma A.5 shows that f(θ) ≤ 0,∀θ, or equivalently ei(θ) ≤ g(1
3
, 1

3
)θ, ∀θ. �
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