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1 Introduction

The team production with several agents is subject to the free-rider problem, but the
problem may be mitigated to the extent that the team forms a long-run relationship.
This type of model of repeated team production has been much studied in the lit-
erature, which has shown that the efficiency of the team production depends on the
richness of information about the agents’ effort levels. Two important papers prove
polar results. One is the uniform inefficiency result due to Radner, Myerson and
Maskin (1986), stating that even very patient agents cannot avoid efficiency loss if the
signal space is small in comparison with the effort space. The other is the folk theorem
by Fudenberg, Levine and Maskin (1994), which shows that if the signal space is richer,
then in general the efficiency loss goes to zero as the agents’ discounting vanishes.

The present paper adds to the literature on uniform inefficiency results, by studying
a version of the model by Radner, Myerson and Maskin (1986). Every period, n agents
decide whether to work for the team or shirk, and their decisions affect a stochastic
outcome of the production of that period, which is either good or bad. The agents are
symmetric; their costs of efforts are the same, they evaluate good and bad outcomes
in the same way, and the probability of each outcome depends only on the number
of agents who work. The assumption of binary outcomes lets our model belong to
the uniform inefficiency literature. Our objective is to characterize the most efficient
equilibrium when the agents are sufficiently patient.1

Given the symmetry, one natural candidate for the second-best equilibrium is the
one where all agents work (with a nonzero probability) in the initial period. The
grim-trigger strategies are an example of such strategies with initial full cooperation.
However, we show that it is often the case that equilibria by such strategies are not
second-best. We present conditions under which the most efficient equilibrium is such
that at any history there exists an agent who is not prescribed to work at all at that
history. That is, in order to achieve the second-best, the team must give up to provide
incentives to all members at any moment. Roughly speaking, the conditions for this
optimality of shirking hold when the probability of good outcome is small even when
all agents work.

A key insight to our result is that the signal space is binary, and therefore one cannot
statistically determine the identity of a deviator from a fully cooperative action profile.
A bad signal indicates a deviation, but one does not know who is the deviator. Hence
all agents must be punished upon a bad signal, which causes an inevitable efficiency loss
in equilibrium. Moreover, the formula by Abreu, Milgrom and Pearce (1991) gives the
size of efficiency loss explicitly. If the efficiency loss is greater than the loss associated
with presence of slackers every period, it is possible that the equilibria with slackers
are optimal. One factor which affects the size of efficiency loss is the likelihood ratio
of a bad outcome between profiles with n and n− 1 cooperators. If the success is very
unlikely, this likelihood ratio is close to 1. Hence the detectability of deviation is weak,
and the efficiency loss is big. In this case, the optimality of shirking is likely to hold.

1Relatedly, Kobayashi, Ohta and Sekiguchi (2008) study a two-agent version of the model for any
level of patience, under an additional assumption that the partners can commit to a sharing rule at
the beginning of their repeated interaction.
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Our methodology is to consider a particular class of strategies where at no history
all agents work with a nonzero probability, and examine whether equilibria by such
strategies exist. We call equilibria by those strategies turnover equilibria with k shirk-
ers, where k ∈ {1, 2, · · · , n − 1}, whose idea is due to Rob and Sekiguchi (2006). A
turnover strategy profile with k shirkers is an automaton strategy profile with the fol-
lowing property. Its state variable is an element of the sets of agents with k members.
If a particular set of agents with k members is the state variable of a period, then the
members in that set are prescribed to shirk in that period. The others are prescribed
to work. The state variable in the next period (another set of agents with k members)
depends on the outcome of this period. If the outcome is bad, the state variable re-
mains the same. If it is good, then a turnover occurs according to the following rule.
If k ≤ n − k, then a set of agents with k members which is disjoint with the current
set is chosen with equal probability, and it is the state variable in the next period. If
k ≥ n− k, then a set of agents with k members which includes the complement of the
current set is chosen with equal probability, and it is the state variable in the next
period.2 Namely, the turnover occurs so that the maximal possible number of agents
working now (which is max{k, n − k}) is (randomly) selected and they are given the
privilege to shirk in the next period.

The turnover strategy profiles with some shirkers are clearly asymmetric, but sym-
metry of its rules on turnover makes it tractable to check its equilibrium conditions.
If a turnover strategy profile with k shirkers is an equilibrium, its (average) payoff
sum is the stage-payoff sum of a profile with n − k workers. If the sum is greater
than the bound on equilibrium payoff sums by strategies with initial full cooperation,
then those equilibria are shown not to be second-best. In this way, the optimality of
shirking obtains.

This optimality result leaves possibilities that (i) there may be better equilibria
than the turnover equilibrium, and (ii) the same payoff sum may be sustained by some
other equilibrium, even when the equilibrium condition for the turnover equilibrium is
not satisfied. However, we can show a much stronger result if there exists a turnover
equilibrium with 1 shirker and it is more efficient than any other equilibrium with
initial full cooperation. In this case, we show that (i) there is no other equilibrium
with a greater payoff sum than the turnover equilibrium with 1 shirker, and (ii) if there
exists an equilibrium with a payoff sum equal to the stage-payoff sum of a profile with
n−1 workers, the turnover strategy profile with 1 shirker is also an equilibrium. Hence
in this case, restriction to turnover strategies loses no generality.

We also present one extension of our model where the agents have an option to
sabotage production. Namely, we assume that each agents has a costly option which
simply reduces the probability of success. This option is potentially important because
given a turnover strategy profile a shirker in a current period may benefit from failure in
the current period, because of an increased probability that his privilege is preserved.
However, we show that this option never affects the equilibrium condition for the
turnover profiles. Consequently, the same optimality of shirking is valid in models
with sabotage.

2The two rules are equivalent if k = n − k, in which case the complement of the current set is the
state variable in the next period with probability 1.

3



The rest of this paper is organized as follows. In Section 2, we introduce the
model. In Section 3, we first review Radner, Myerson and Maskin’s (1986) uniform
inefficiency result and Abreu, Milgrom and Pearce’s (1991) formula. Then we introduce
the turnover strategies, examine their equilibrium conditions, and compare with the
first results. The extension to a model with sabotage is studied in Section 4.

2 Model

There is a team with n identical members (where n ≥ 2), who are engaged in joint
production over time. Each period, they have two alternatives; to work or to shirk.
We denote their sets of period-actions by {W,S}, where W is to work and S is to shirk.
It costs c > 0 for an agent to choose W , whereas S is costless. The outcome of the
team production is binary, which is either good (success) or bad (failure), denoted by
G and B, respectively. The outcome is stochastic, and its probabilities depend on the
number of agents who choose W . We denote the probability of good outcome when
k agents work by πk. If the outcome is good, each agent receives a utility of x > 0.
Failure gives no additional utility.

We assume that the outcome and the utility accrued from it are commonly ob-
servable among the agents, but are of undescribable nature. Namely, the outcome
and payoff are unverifiable information, and therefore the team cannot commit to an
explicit contract which specifies monetary transfer among them depending on the out-
come. As a result, if k agents work in a given period, the expected period-payoff of
each agent is πkx − c if he works, and πkx if he shirks. Thus, if we define the total
benefit of success X = nx, the sum of expected period-payoffs when k agents work is
πkX − kc. We comment on this assumption of unverifiability in Section 3.

The following assumptions are made for the payoff and information structure of
the period game.

Assumption 1 For any k ∈ {1, 2, · · · , n}, we assume:

(πk − πk−1)X > c > (πk − πk−1)x, (1)

πk − πk−1 is increasing in k, (2)

π0 > 0, πn < 1. (3)

(1) states that an agent’s effort is always beneficial to the team, but it is not in the
individual interests of the agent to choose W . Note that it implies monotonicity of
πk’s. This assumption makes the period-game an n-person prisoners’ dilemma, because
full cooperation where all agents select W is efficient but S is the dominant action to
all of them. (2) means that the incremental probability of success by an agent’s effort
is greater when more agents make efforts. In other words, the agents’ efforts are
complementary. This assumption is natural in the context of team production. One
important consequences of this assumption is that it implies the monotone likelihood
ratio property; namely, (1 − πk−1)/(1 − πk) is strictly increasing in k. Finally, (3) is
an assumption of imperfect observations; both outcomes have a nonzero probability
under any action pair.
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One instance of parameters satisfying Assumption 1 is the following linear model;

πk = αk + β, (4)

where α ∈ (c/X, c/x) and nα + β < 1. In this model, the incremental probability of
success by one agent’s effort is independent of the others’ actions.

In each period t = 0, 1, 2, · · · , this period-game is played. A strategy of each agent
in this infinitely repeated game is a mapping which determines a (randomized) action
in each period, depending on what he observed in the past. We assume that the other
agents’ actions are not observable. We also assume that a public randomization device
is available at the beginning of each period. Hence past observations are a collection
of past outcomes, (a sequence of G or B) that agent’s past actions (a sequence of W

or S), and past realizations of the public randomization device. Therefore a strategy
specifies actions in each period t as a function of a t-length sequence of signals, a t-
length sequence of own actions, and a (t + 1)-length sequence of sunspots. A profile of
strategies generates a sequence of expected period-payoffs, and we assume that each
partner’s overall utility from the strategy profile is the average discounted sum of the
period payoffs. Formally, if a strategy profile σ = (σi)ni=1 generates a sequence of
expected period payoffs (ui(t))∞t=0 for agent i, then his payoff of the repeated game is:

gi(σ) = (1 − δ)
∞∑
t=0

δtui(t),

where δ ∈ (0, 1) is a common discount factor of the partners.
A strategy of agent i is public if it is independent of his own actions. A strategy

profile is public if all agents play a public strategy. A strategy profile is a public
equilibrium if it is a Nash equilibrium of the repeated game (in the standard sense),
and if it is public. Because of the assumption of full support (3), any public history (a
sequence of signals and sunspots) is on the path given any (possibly nonpublic) strategy
profile. Hence the public equilibrium, sometimes simply called the equilibrium, satisfies
the requirement of sequential rationality. Thus the public equilibrium is stronger
than sequential equilibrium. We adopt the public equilibrium as our solution concept,
mainly because the large part of literature also uses this solution concept (Radner,
Myerson and Maskin (1986), Abreu, Pearce and Stacchetti (1990), Abreu, Milgrom and
Pearce (1991) and Fudenberg, Levine and Maskin (1994)), and therefore it facilitates
comparison with previous results.3

We call a public equilibrium most efficient or second-best if its payoff sum is no less
than that of any public equilibrium of this model. While we have excluded a possibility
of monetary transfer based on outcomes, we do not deny monetary transfers themselves.
Therefore the welfare criterion in terms of the payoff sum is relevant. In what follows,
we mainly study most efficient equilibria and their payoff sum when the agents are
sufficiently patient.

3However, the restriction to public equilibrium is not warranted in terms of efficiency. Mailath,
Matthews and Sekiguchi (2002) and Kandori and Obara (2006) provide examples where some nonpublic
strategy sequential equilibria are more efficient than any public equilibrium. We do not know, however,
whether our model is another example of that phenomenon.
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3 Analysis

3.1 Equilibria with Initial Full Cooperation

Given the assumption that the agents are symmetric, one natural candidate for the
second-best equilibrium is the one where all agents work in the initial period. In this
subsection, we limit attention to a class of public strategy profiles which includes the
above candidate, and derive a uniform bound on the sum of the agents’ payoffs of the
equilibria in this class, which applies to any level of discounting. This is a version of
the uniform inefficiency result by Radner, Myerson and Maskin (1986), and the bound
is characterized in the same way as the formula by Abreu, Milgrom and Pearce (1991).

A public strategy profile has initial full cooperation if the action profile (W,W, · · · ,W )
is played with a nonzero probability in period 0. Note that the definition of initial full
cooperation is much weaker than the term suggests. Namely, the agents need not
cooperate with probability 1. Moreover, it allows them to randomize in asymmetric
ways. The grim trigger strategy profile has initial full cooperation.

Proposition 1 Suppose there exists a most efficient equilibrium by a strategy profile
with initial full cooperation. Then its payoff sum, denoted by V ∗, satisfies

V ∗ ≤ X − n
1 − πn−1

πn − πn−1
c. (5)

Proof. Let us fix a second-best equilibrium by a strategy profile with initial full
cooperation, and v = (vi)ni=1 be its payoff vector. Without loss of generality, we can
assume that the equilibrium actions in period 0 do not depend on the sunspot of that
period. Let

m =
(
η1W + (1 − η1)S, η2W + (1 − η2)S, · · · , ηnW + (1 − ηn)S

)
be the mixed action profile in period 0 of this equilibrium. For each agent i, let qai

i

be the probability of good outcome when agent i chooses ai ∈ {W,S} and all other
agents follow m. Let fi(y) (y ∈ {G,B}) be agent i’s expected continuation payoff from
period 1 on, given that the signal in period 0 is y. Since the equilibrium has initial full
cooperation, ηi > 0 for any i. Hence the following value equation and the incentive
condition to choose W must hold for each agent i;

vi = (1 − δ)
(
qW
i x − c

)
+ δ

[
qW
i fi(G) +

(
1 − qW

i

)
fi(B)

]
(6)

≥ (1 − δ) qS
i x + δ

[
qS
i fi(G) +

(
1 − qS

i

)
fi(B)

]
. (7)

Note that (6) and (7) reduce to

(1 − δ)
{

c − (
qW
i − qS

i

)
x
}
≤ δ

(
qW
i − qS

i

){
fi(G) − fi(B)

}
. (8)

We claim that ηi = 1 must hold for each i. To show that, suppose on the contrary
that ηj < 1 for some j. Then let us define the following new strategy profile. In
period 0, all agents choose W independently of sunspots. From period 1 on, they
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conform to the original strategy profile. Let (v′i)
n
i=1 be the payoff vector of this new

profile. Since the same fi(y)’s specify the continuation payoffs, v′i’s are decomposed as
follows, for each i.

v′i = (1 − δ)(πnx − c) + δ
[
πnfi(G) +

(
1 − πn

)
fi(B)

]
. (9)

By (1), the left-hand-side of (8) is positive, and therefore we have fi(G) > fi(B) for
any i. Hence (2) and (8) imply:

(1 − δ)
{

c − (
πn − πn−1

)
x
}
≤ δ

(
πn − πn−1

){
fi(G) − fi(B)

}
(10)

for any i. By (10), any one-shot deviation from the new profile in period 0 does not
pay. Since the continuation play from period 1 on forms a public equilibrium, this
proves that the new profile is also an equilibrium.

Comparing (6) and (9), we see that the new profile has a strictly greater payoff sum
than the original one, because (i) πn ≥ qS

i for any i and the inequality is strict for any
i �= j (recall ηj < 1), and (ii) fi(G) > fi(B) for any i. This is a contradiction against
the second-best property of the original equilibrium, so that we must have ηi = 1 for
any i. In other words, the agents cooperate with probability 1 in period 0.

Let us substitute (8) into (6) and then substitute ηk = 1 for all k. Then we have:

vi ≤ (1 − δ)(πnx − c) + δfi(G) − (1 − δ)(1 − πn)
c − (

πn − πn−1

)
x

πn − πn−1
. (11)

Since the equilibrium is most efficient, we have
∑n

i=1 fi(G) ≤ ∑n
i=1 vi. Let us substitute

it to the sum of (11) over i, and rearrange;

V ∗ =
n∑

i=1

vi ≤ πnX − nc − n(1 − πn)
c − (

πn − πn−1

)
x

πn − πn−1
= X − n

1 − πn−1

πn − πn−1
c,

which is equivalent to (5). Q.E.D.

Note that the upper bound on the sum of equilibrium payoffs given by Proposition 1
is independent of δ. Since (5) shows that the bound is less than the sum of the action
profile (W,W, · · · ,W ), the difference is the size of the efficiency loss the team cannot
avoid however patient they are. This is a restatement of the uniform inefficiency result
by Radner, Myerson and Maskin (1986). To sustain a fully cooperative outcome in
some period, the team must punish each agent in the future if a signal suggesting a
deviation of that agent is realized. With only two signals, the bad signal must be
used to punish all agents. This causes inevitable loss of efficiency for any equilibrium.
Proposition 1 explicitly states the loss term, and it is a restatement of the formula
presented in Abreu, Milgrom and Pearce (1991).

To what extent is the upper bound V ∗ tight? Note that it is possible that V ∗ is
so small that the sum of the agents’ minimax values of the period game exceeds it.
Since the period-game is a prisoners’ dilemma, its minimax value for each agent is
his period-payoff of (S, S, · · · , S). Hence if V ∗ ≤ π0X, no equilibrium with initial full
cooperation exists under any δ. Otherwise, the payoff sum V ∗ is achieved by some
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trigger-type strategy profile if the agents are sufficiently patient. However, we are not
much interested in when and how V ∗ is achieved, because we will examine whether
there exist other types of public equilibria with a greater payoff sum than V ∗.

3.2 Turnover Equilibrium

In Subsection 3.1, we have considered the strategy profiles in which all agents choose
W with a positive probability in the initial period. This subsection examines quite a
different class of strategies; at any history, there exists an agent who chooses S with
certainty. In particular, we study a special class of those strategies.

Let us define the turnover strategy profile with k shirkers, where k ∈ {1, 2, · · · , n−
1}, as the following strategy profile, and let us denote it by τk and abbreviate it as the
k-TO strategy profile. τk is described by an automaton. The state space is the set of
all subsets of N ≡ {1, 2, · · · , n} with k elements. Formally, the state space Q is:

Q =
{
N ′ ⊆ N : |N ′| = k

}
.

For example, if n = 3, then

Q =

{{{1},{2},{3}} if k = 1,{{1, 2}, {2, 3}, {1, 3}} if k = 2.

The initial state is {1, 2, · · · , k}. If the current period is in some state N ′ ∈ Q,
then τk specifies that all agents in N ′ choose S and all other agents choose W .

The state transition rule is as follows. Suppose some N ′ ∈ Q is the state of the
current period. Then the state in the next period depends entirely on the outcome
y ∈ {G,B} in the current period. If y = B, then N ′ continues to be the state variable
in the next period. If y = G, then we have two cases to consider. First, if n − k ≥ k,
then the state in the next period is selected from the set

{
N ′′ ∈ Q : N ′′ ∩ N ′ = ∅}

with equal probability. Second, if n − k ≤ k, then the state in the next period is
selected from the set

{
N ′′ ∈ Q : N \ N ′ ⊆ N ′′}

with equal probability. Note that if n − k = k, the two rules are equivalent, because
the above two sets are the same (in fact, equal to

{
N \ N ′}).

The idea of this strategy profile is to allow exactly k agents to shirk at any history.
The state variable corresponds to who is privileged to shirk, and the initial state is
chosen arbitrarily; here the first k agents enjoy the privilege. If the current outcome is
bad, then the same set of agents is given the privilege in the next period. If the current
outcome is good, then a turnover occurs. That is, the set of agents who are allowed
to shirk in the next period is chosen so that the maximum number of agents who are
allowed to shirk lose the privilege in the next period. Hence if n − k > k, namely the
case with more workers than shirkers, all current shirkers lose the privilege in the next

8



period. The shirkers in the next period are chosen from the n − k current workers,
and the selection from the n − k agents is made equiprobably. Instead, if n − k < k

and therefore there are less workers than shirkers, all current workers become shirkers
in the next period. However, there are still 2k − n shirker slots, which are filled by
the k current shirkers. Again, all possible selections from the k agents have equal
probability. Finally, if n − k = k and the number of workers and shirkers is the same,
then the turnover occurs in a simplest form. That is, all agents change their roles in
the next period.

The following result gives a necessary and sufficient condition for the k-TO profile
τk to be a public equilibrium.

Proposition 2 If

πn−k

(
πn−k − πn−k−1

)
X >

{
(n − k)πn−k + kπn−k−1

}
c (12)

holds, then τk is a public equilibrium if and only if

δ ≥ δ ≡ L
{
c − (πn−k − πn−k−1)x

}(
L − nπn−k

){
c − (πn−k − πn−k−1)x

}
+

(
πn−k − πn−k−1

)
kc

, (13)

where L ≡ max{n − k, k}. If (12) does not hold, then τk is not a public equilibrium
under any δ.

Proof. In τk, the play is stationary and the agents are symmetric in terms of the
transition probabilities between workers and shirkers. Hence let v be the payoff of
τk for each agent i ∈ {1, 2, · · · , k} and let w be the payoff of τk for each agent i ∈
{k + 1, · · · , n}. Then we have the following value equations:

v = (1 − δ)πn−kx + δ

[
πn−k

n − k

L
w +

(
1 − πn−k

n − k

L

)
v

]
, (14)

w = (1 − δ)
(
πn−kx − c

)
+ δ

[
πn−k

k

L
v +

(
1 − πn−k

k

L

)
w

]
. (15)

From (14) and (15), we obtain

v − w =
(1 − δ)Lc

(1 − δ)L + δnπn−k
. (16)

Note that (16) implies v > w.
Suppose that the current period is in some state N ′ ∈ Q. Then the agents in N ′ has

no incentive to make a one-shot deviation; a deviation to W reduces his period-payoff
due to (1), and it makes the unfavorable continuation payoff w more likely. Next, let
us consider a one-shot deviation by an agent not in N ′. By symmetry, this is the only
relevant incentive problem, and therefore τk is a public equilibrium if and only if this
one-shot deviation does not pay.
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The one-shot deviation does not pay if and only if

w ≥ (1 − δ)πn−k−1x + δ

[
πn−k−1

k

L
v +

(
1 − πn−k−1

k

L

)
w

]
,

∴ (1 − δ)
{

c − (πn−k − πn−k−1)x
}
≤ δ(πn−k − πn−k−1)

k

L
(v − w). (17)

Let us substitute (16) into (17), and divide by 1 − δ;

c − (πn−k − πn−k−1)x ≤ δ(πn−k − πn−k−1)
kc

(1 − δ)L + δnπn−k
.

After rearranging, we have;

δ
[(

L − nπn−k

){
c − (πn−k − πn−k−1)x

}
+

(
πn−k − πn−k−1

)
kc

]
≥ L

{
c − (πn−k − πn−k−1)x

}
.

(18)

(12) is equivalent to the strict inequality version of (18) evaluated at δ = 1. There-
fore if (12) holds, the coefficient of δ in (18) is strictly positive. Hence (18) is equivalent
to (13), which proves the first part of the proposition.

Next, suppose (18) holds for some δ ∈ (0, 1). Then the coefficient of δ in (18) is
strictly positive. Thus the strict inequality version of (18) holds at δ = 1, which is
(12). Hence (12) is a necessary condition for τk to be a public equilibrium for some δ.
Taking a contraposition, we prove the second part. Q.E.D.

Proposition 2 states that τk is a public equilibrium for patient agents, if X is
large or if πn−k−1 is small in comparison with other parameters. Under τk, an agent
obviously benefits from starting a period as a shirker, rather than a worker, for any
level of discounting. This creates a rent for a shirker. It provides an incentive to work
if he is assigned to work in the current period, because W increases a probability of
good outcome and therefore that of turnover. However, the size of the rent is already
fixed and depends entirely on c, k and πk. For an equilibrium, it must be large enough
to provide incentives, which is the case if the cost associated with a current effort is
small (large X), or if shirking reduces the probability of success to a great extent (small
πn−k−1). Additionally, he of course must be patient enough.

In general, it is not obvious how the set of k satisfying (12) looks like. One special
case where the characterization of the set is easy is the linear technology which satisfies
(4). In this case, (12) reduces to

αX >
{

n − αk

α(n − k) + β

}
c,

whose right-hand-side is strictly decreasing in k. Hence if (12) is satisfied for some
k, it is satisfied for any k′ > k. In other words, there exists k̂ such that the set of k

satisfying (12) has the form {k̂, k̂ + 1, · · · , n − 1} if (4) holds.4

The next question to ask is whether the turnover equilibria with some number

4However, it is possible that k̂ = n and therefore the set is empty.
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of shirkers can be a candidate for the second-best equilibrium. The next subsection
answers to that question.

3.3 Optimality of Shirking

Proposition 2 in the previous subsection is most interesting when it holds for k = 1;
the case where a single agent is allowed to shirk. First, the 1-TO equilibrium is most
efficient among all turnover equilibria. Second, and more importantly, it is a second-
best equilibrium if it can be shown to be more efficient than any public equilibrium
with initial full cooperation.

Proposition 3 If

πn−1

(
πn−1 − πn−2

)
X >

{
(n − 1)πn−1 + πn−2

}
c, (19)

δ ≥ (n − 1)
{
c − (πn−1 − πn−2)x

}{
n(1 − πn−1) − 1

}{
c − (πn−1 − πn−2)x

}
+

(
πn−1 − πn−2

)
c
, (20)

πn−1X − (n − 1)c > X − n
1 − πn−1

πn−1 − πn−2
c (21)

hold, then τ1 is a second-best public equilibrium. Moreover, any second-best public
equilibrium has the property that at any history exactly one agent is prescribed to shirk
given the history.

Proof. By Proposition 2, τ1 is a public equilibrium because (19) and (20) hold. Since
the payoff sum of τ1 is πn−1X − (n−1)c, (21) and Proposition 1 imply that τ1 is more
efficient than any public equilibrium with initial full cooperation.

Fix a most efficient public equilibrium, and let (vi)ni=1 be its payoff vector. Also, let
(ui)ni=1 be its expected period-payoff vector in period 0, and let

(
fi(y)

)n

i=1
(y ∈ {G,B})

be its continuation equilibrium payoff vector from period 1 on if the signal in period 0
is y. Then we have the following value equation for the payoff sum:

n∑
i=1

vi = (1 − δ)
n∑

i=1

ui + δ
{

π̂
n∑

i=1

fi(G) + (1 − π̂)
n∑

i=1

fi(B)
}
, (22)

where π̂ is the probability of G in period 0.
Since the second-best equilibrium has no initial full cooperation,

n∑
i=1

ui ≤ πn−1X − (n − 1)c ≤
n∑

i=1

vi, (23)

where the second inequality follows because τ1 is an equilibrium. We also have∑n
i=1 vi ≥ ∑n

i=1 fi(y) for each y ∈ {G,B}. Substituting this and (23) into (22),
we find

n∑
i=1

vi =
n∑

i=1

ui = πn−1X − (n − 1)c =
n∑

i=1

fi(y) (24)
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for any y ∈ {G,B}. This implies that τ1 is most efficient. Also (24) implies that the
expected period-payoff sum of any second-best equilibrium in period 0 is πn−1X −
(n − 1)c. Since the equilibrium does not have initial full cooperation, exactly one
agent shirks in period 0 of this equilibrium. (24) also implies that any continuation
equilibrium of a most efficient equilibrium is also most efficient. Therefore, any second-
best equilibrium must specify exactly one agent to shirk at any history, which completes
the proof. Q.E.D.

The first part of Proposition 3 implies that the 1-TO equilibrium is second-best for
patient partners if the efficiency loss associated with equilibria with initial full coop-
eration is large and if the 1-TO strategy profile is indeed a public equilibrium. The
problem is whether the efficiency loss from the uniform inefficiency result is greater
than the efficiency loss from letting one agent shirk. Roughly speaking, the former loss
tends to be greater than the latter if the success is a rare event even if all agents work.
If the success is unlikely, failure does not provide much information as to whether
someone deviates from a fully cooperative profile. Therefore the incentive costs to let
all agent work tend to be large. One set of parameters satisfying the conditions of
Proposition 3 is: n = 4, πi = 0.03(i + 1), c = 2 and x = 63 (hence X = 252). In this
case, the 1-TO equilibrium is most efficient if δ ≥ 275/281.

The second part of Proposition 3 implies that, if the conditions for this proposition
are met, the most efficient equilibrium always has the form of shifting the status as
a single shirker depending on past outcomes. Thus the second-best requires presence
of a slacker in the team. Indeed, the slacker plays a similar role to the principal in
the context of moral hazard in teams (Holmstrom (1982)). The principal in those
models of teams does not perform something productive to the team. He is simply a
budget-breaker and pays to the agents if their performance is good. In our model of
repeated games, the slacker does not pay to the other agents directly. He rather pays
out his future rent, by giving up his privilege via turnover.5

While we are interested in the issue of optimality of shirking, we have so far only
considered a special type of strategies; the 1-TO strategy profile. It may be that other
profiles sustain equally efficient outcomes under a wider range of parameters. The
following result proves that this is not the case. The statement needs more definitions.
A public strategy profile is k-shirker type (k ∈ {1, 2, · · · , n − 1}) if at any history the
profile prescribes some k agents to choose S and the remaining n − k agents to select
W . An equilibrium is k-shirker type if it is a k-shirker type strategy profile.

Proposition 4 If a 1-shirker type strategy profile σ is a public equilibrium, then (19)
and (20) must hold.

Proof. Let E be the set of 1-shirker type equilibrium payoffs of some agent i. By
symmetry, E does not depend on the choice of i. Let w = min E, and let σ be a
1-shirker type equilibrium whose payoff of agent 1 is w. For each agent i, let vi, fi(G)
and fi(B) be agent i’s equilibrium payoff and continuation payoffs from period 1 on
given that the signal in period 0 is G or B, respectively.

5Rayo (2007) studies a model of repeated team production with individual signals, and examines
how a principal is determined endogenously. Our model is different in the sense that we rather study
endogenous dynamics of the status of a principal.
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We first show that σ prescribes agent 1 to choose W in period 0. Suppose otherwise.
Then agent 1 has the following value equation:

w = (1 − δ)πn−1x + δ
{
πn−1f1(G) + (1 − πn−1)f1(B)

}
.

Note that the continuation equilibrium of σ is also 1-shirker type. Hence f1(G) ∈ E

and f1(B) ∈ E, and by the definition of w, we obtain:

w ≥ (1 − δ)πn−1x + δw.

Hence w ≥ πn−1x. Since vi ≥ w for any i, we must have
∑n

i=1 vi ≥ πn−1X. This
is a contradiction, because any 1-shirker type strategy profile has the payoff sum of
πn−1X − (n − 1)c. As a result, agent 1 chooses W in period 0.

Without loss of generality, we can assume that it is agent n who is prescribed to
shirk in period 0. Then the one-shot deviation by any agent i ≤ n− 1 in period 0 does
not pay:

(1 − δ)
{
c − (πn−1 − πn−2)x

} ≤ δ(πn−1 − πn−2)
{
fi(G) − fi(B)

}
. (25)

Since
∑n

i=1 fi(G) =
∑n

i=1 fi(B), (25) implies

δ(πn−1 − πn−2)
{
fn(B) − fn(G)

}
= δ(πn−1 − πn−2)

n−1∑
i=1

{
fi(G) − fi(B)

}
≥ (1 − δ)(n − 1)

{
c − (πn−1 − πn−2)x

}
. (26)

Since
∑n

i=1 fi(B) = πn−1X − (n − 1)c and fi(y) ≥ w for any i and any y ∈ {G,B}, it
follows that

fn(B) − fn(G) = πn−1X − (n − 1)c −
n−1∑
i=1

fi(B) − fn(G)

≤ πn−1X − (n − 1)c − nw. (27)

From the value equation of agent 1, we have

w =(1 − δ)
(
πn−1x − c

)
+ δ

{
πn−1f1(G) + (1 − πn−1)f1(B)

}
≥πn−1x − c +

δ

1 − δ
πn−1

{
f1(G) − f1(B)

}
≥ πn−2

πn−1 − πn−2
c, (28)

where the first inequality follows from f1(B) ≥ w, and the second one from (25).
Let us substitute (28) into (27), and then substitute it into (26). Then we obtain:

δ(πn−1 − πn−2)
{

πn−1X − (n − 1)πn−1 + πn−2

πn−1 − πn−2
c
}

≥ (1 − δ)(n − 1)
{
c − (πn−1 − πn−2)x

}
.

(29)
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Since each side of (29) must be positive, (19) must hold. In this case, (29) is equivalent
to (20). Q.E.D.

Proposition 4 reveals that the 1-TO strategy profile is a representative of the 1-shirker
type strategy profiles. It implies that even if (21) is satisfied, the second-best equi-
librium payoff sum is necessarily less than πn−1X − (n − 1)c if either (19) or (20) is
violated. As far as optimality of the 1-shirker type strategy profiles is concerned, no
generality is lost when we limit attention to τ1.

We conclude this section by pointing out the role of the assumption that the out-
come is not verifiable. If it were verifiable, then the team can write a contract specify-
ing monetary transfers among its members depending on the outcome. Suppose (19)
holds, and consider the following static contract: if the outcome is G, then agent n

pays (x − ε)/(n − 1) to each of the other n − 1 agents, where ε > 0 satisfies

(X − ε)(πn−1 − πn−2) > (n − 1)c. (30)

Note that (19) guarantees existence of such ε > 0. If the outcome is B, no monetary
transfer is taken place.

Given this contract, it forms a static equilibrium for all agents i ≤ n−1 to choose W

and for agent n to choose S. Indeed, (30) implies that it is optimal for agent i ≤ n−1 to
choose W given the other agents’ actions. Thus the same payoff sum πn−1X− (n−1)c
is sustained as a repetition of one-period contractual outcomes. In other words, our
analysis demonstrates that lack of verifiability is sometimes resolved by repeated play
among the agents.

4 Discussions

So far we have assumed that the agents have a binary choice between a positive effort
and a zero effort each period. In this section, we study an extended model where they
have a negative effort as a third option. This action is costly and reduces the probability
of good outcome given the others’ actions, and therefore it is a dominated action in the
period game. Nevertheless it sometimes makes much sense to have this type of options
in repeated games, because it changes the minimax values of players and therefore the
equilibrium payoffs. This option is also relevant in terms of the turnover equilibria,
because the agents with privilege may have an incentive to exercise the option in order
to avoid turnover.

Formally, the action set of each agent in each period is now {W,S,D}, where D

means destructive activity. The set of signals and the cost of W remains the same;
{G,B} and c > 0. Let d > 0 be the cost of choosing D. For k and l such that
0 ≤ k + l ≤ n, let πk,l be the probability of G when k agents work and l agents choose
D. We assume for any k and l such that 0 ≤ k + l < n, πk+1,l > πk,l > πk,l+1. We
define πk ≡ πk,0, and assume that those πi’s satisfy Assumption 1.6

Also in this extended model, we can define the turnover strategy profile in the same
way. The next result limits attention to τ1 and states that the equilibrium conditions

6We can think of other reasonable assumptions on πk,l’s, but they are unnecessary here.
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are the same.

Proposition 5 τ1 is a public equilibrium if and only if (19) and (20) hold.

Proof. Since the introduction of action D does not change the definition of τ1, the
payoffs of agents 1 and 2, denoted by v and w respectively, are decomposed as follows.

v = (1 − δ)πn−1x + δ
{
πn−1w + (1 − πn−1)v

}
,

w = (1 − δ)(πn−1x − c) + δ

{
πn−1

n − 1
v +

(
1 − πn−1

n − 1

)
w

}
,

from which we obtain

v − w =
(1 − δ)(n − 1)c

(1 − δ)(n − 1) + δnπn−1
. (31)

As before, in τ1, the agent prescribed to choose S has no incentive to choose W .
Also the agent prescribed to choose W has no incentive to choose S if and only if (19)
and (20) hold. He has no incentive to choose D, since it is more costly and reduces
the probability of G more than S. So suppose (19) and (20) hold, and let us consider
the one-shot deviation by a shirker such that he chooses D and then conforms to τ1.

The gain from this deviation is:

D ≡ (1 − δ)(−d + πn−1,1x) + δ
{
πn−1,1w + (1 − πn−1,1)v

} − v

Substituting (31) into this yields:

D = (1 − δ)

[
− d − (πn−1 − πn−1,1)

{
(1 − δ)(n − 1) + δnπn−1

}
x − δ(n − 1)c

(1 − δ)(n − 1) + δnπn−1

]
.

Note that (19) implies πn−1X > (n − 1)c. Therefore,

{
(1 − δ)(n − 1) + δnπn−1

}
x − δ(n − 1)c

=(1 − δ)(n − 1)x + δ
{
πn−1X − (n − 1)c

}
> 0

follows. This proves that D < 0, and the necessary and sufficient condition for τ1 to
be a public equilibrium is (19) and (20), as is desired. Q.E.D.

The option to sabotage production is irrelevant simply because it is too costly for
an agent with privilege to choose it. It is not only costly per se, but also reduces
benefits from current success. Lazear (1989) lays out the idea that the agents may
engage in detrimental activities if they are evaluated based on relative performance.
Tournaments are a typical example, and Lazear (1989) points out importance of the
compressed wage schedule. In our model the payments must be made from transfer
of future payoffs, and the range of possible transfers is limited.7 The wages are thus
already compressed, and the equilibrium condition in our original model, virtually

7Even if they are sufficiently patient, the benefit from turnover is not long-lived and therefore the
size of incentives provided via turnover is not so large.
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stating that these compressed wages still provide incentives, also provides incentives
not to choose D.
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