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Abstract

We present a continuous-time agency model under mean-volatility joint ambiguity

uncertainties, where both the principal and agent exhibit Gilboa-Schmeidler’s extreme

ambiguity aversion. For this, we extend the martingale method well known in the

agency literature, by allowing not only the mean but the volatility of the outcome pro-

cess to be controlled in weak formulation. Unlike the existing literature, we distinguish

between ex-post realized and ex-ante perceived volatilities. Then we argue that the

second-best contract in general consists of two sharing rules: one for realized outcome

and the other for realized volatility. The outcome sharing is for both uncertainty shar-

ing and work incentives, and the volatility sharing is to align the agent’s worst prior

over ambiguity uncertainties with that of the principal. The optimal volatility sharing

occurs when their worst priors become symmetrized. We show that the realized com-

pensation is positively associated with the realized volatility, and that the sensitivity

to the outcome is negatively related to the perceived volatility.
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Chen, Zengjing Chen, Jaksa Cvitanić, Shige Peng and Jianfeng Zhang for useful comments/discussions. All
remaining errors of course are mine.



1 Introduction

We examine effects of ambiguity uncertainties on the optimal contract under moral hazard.

It is well-accepted that economic future outcomes can be subject to ‘risk’ and ‘ambigu-

ity/Knightian’ uncertainties. Under risk uncertainty, the true probability distribution of

the uncertain outcome is known, whereas under ambiguity uncertainty, the true probability

distribution is unknown.

In the presence of ambiguity uncertainty, the subjective expected utility paradigm pi-

oneered by Savage (1954) and Anscombe and Aumann (1963) implies that a rational eco-

nomic agent who adheres to a certain set of axioms, makes decisions maximizing his ex-

pected utility, as if he subjectively assigned probabilities to all ambiguous events. However,

the famous Ellsberg (1961) paradox indicates that one of those axioms, namely the inde-

pendence axiom, can be frequently violated by real-life thought experiments. Proposed

as resolutions to this paradox in the literature are various modifications of the paradigm

such as maxmin expected utility, Choquet expected utility, and smooth-ambiguity utility

theories.1

We apply Gilboa and Schmeidler’s (1989) maxmin (multiple-priors) utilities to a con-

tracting problem where the principal (she) contracts the agent (he) to manage an asset

under ambiguity uncertainties. Endowed with maxmin utilities, the two contracting par-

ties perceive the ambiguity uncertainties as risk uncertainties under their subjective worst

priors which have nothing to do with the unknown true distribution of the uncertain asset

outcome. Moreover, since their worst priors can be different from each other, it is seemingly

possible that the two different individuals behave as if they were given different information

about the common uncertainties, and decided to ‘agree to disagree.’2

1See Gilboa and Schmeidler (1989) for maxmin expected utility; Choquet (1953), Gilboa (1987) and
Schmeidler (1989) for Choquet expected utility, and Klibanoff, Marinacci, and Mukerji (2005) for smooth-
ambiguity utility theories.

2Epstein and Miao (2003) and Epstein (2001) consider two people with different levels of ambiguity. In
this paper, two people, the principal and agent, face the common ambiguities.
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In this paper, however, we show that the disagreement of their worst priors does not

occur under the optimal contract. For this, we introduce to our agency model joint ambi-

guities in the mean and volatility of an Itô process-driven continuous-time outcome.3

It is well known from the existing literature that the volatility of the outcome impor-

tantly affects both risk-sharing and incentives in contracting. In the presence of volatility

ambiguity, however, there are two different volatilities, ex-ante and ex-post volatilities: the

former is subjectively ex-ante perceived and thus noncontractable, whereas the latter is ob-

jectively ex-post realized and thus contractable. Then, one can easily imagine that different

subjective perceptions, if any, can cause inefficiency in contracting, just like information

asymmetry (without learning) can. Thus, the principal may want to look for an extra

contractual arrangement which can help reduce the perceptional difference.

We show that in the first-best contracting, such an extra contract is unnecessary because

the usual standard outcome-based first-best contract alone automatically induces both the

principal and agent to agree, in perception, on the volatility and mean of the ambiguous

outcome. In the second best contracting, however, the outcome-based contract alone cannot

optimally induce the agreement. As a result, the second best contract requires two distinct

sharing rules: one for the realized outcome and the other for the realized volatility.4 The

outcome sharing is for uncertainty sharing and work incentives, and the volatility sharing

for symmetrization of perceived risk burdens/premia between the two individuals. The

two sharing rules are represented by their sensitivities, βt and θt, to the outcome and the

realized volatility, respectively.

3Our joint ambiguity assumption is necessary in order to derive a nontrivial resolution of the disagreement
issue: it shall be seen later that the resolution requires a volatility-sharing scheme as an integral part of
the optimal contract. Note that the issue does not arise in contracting if either the mean alone or the
volatility alone of the outcome is ambiguous, because both the risk-and-ambiguity-averse principal and
agent (automatically) agree on the most pessimistic probability measure for the outcome under the usual
outcome-sharing contract. Chen and Epstein (2002) show that many agents with different concave utility
functions can agree on the most pessimistic probability measure if the set of possible measures satisfies
the rectangularity condition under the mean ambiguity. Epstein and Schneider (2008) consider a volatility
ambiguity case.

4Cvitanić, Possamäı and Touzi (2014) also present a similar result from their principal-agent problem
without ambiguity. Our result depends on a completely different economic reasoning from theirs.
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We argue that volatility sharing is optimally achieved when the worst priors of the

two contracting parties are symmetrized.5 Differential priors about the volatility would

result in differential risk premia: given an outcome sharing rule βt, the agent may perceive

excessively high risk from his ambiguity-uncertainty exposure, and demand too higher a

risk premium than, the principal believes, he should. Then, the principal can improve

the contract by using the volatility sharing rule θt to shift a part of the agent’s perceived

risk burden to herself, until their perceived risk premia are equalized, and so are their

worst priors.6 This intuition is reminiscent of the law of one price in financial markets

where investors who find different prices for the same asset trade for profit until the price

discrepancy disappears.

We further show that the optimal θt is positive: the greater the realized volatility, the

more the realized compensation to the agent. We believe that this result is consistent,

to some extent, with popular executive compensation practices of granting stock options,

in the sense that stock options values are positively associated with realized volatilities.

See Guay(1999), Core and Guay (2002), Coles, Daniel and Naveen (2006) and Murphy

(2012) for positive empirical relation between pay and (total) option Vega, where the Vega

measures the change of the option value per one percentage-point increase in volatility.

The two sensitivities βt and θt are determined over time based on both static and

dynamic tradeoffs. Static factors such as risk and work aversion, and ex-ante perceived

outcome volatility are well known in the literature. Dynamic factors include not only the

time and state, but the principal’s effective share which we define (in Section 5.2) as the

sum of the following two components: the nominal share 1 − βt, and an imaginary extra

5 Note that a need for volatility sharing uniquely arises because of the presence of mean-volatility joint
ambiguity uncertainties. Disagreement on the worst prior does not arise in contracting, if either the mean
alone or the volatility alone of the outcome is ambiguous, because given the usual second-best outcome-
based contract alone, both the risk-and-ambiguity-averse principal and agent automatically agree on the
most pessimistic probability measure for the outcome. Chen and Epstein (2002) show that many agents
with different concave utility functions agree on the most pessimistic probability measure under the mean
ambiguity. Epstein and Schneider (2008) consider a volatility ambiguity case.

6One may alternatively view it as a social planner problem in a two-person world, where the planner uses
the volatility sharing rule to allocate volatility-ambiguity uncertainties between the two parities, in order to
maximize their perceived aggregate welfare.
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share ZPt . This factor affects the two sensitivities over time: holding static factors fixed,

the greater the principal’s effective share, the higher-powered outcome-based incentives.

In Section 6, we show that the imaginary share is positive (negative, zero), if the outcome

exhibits increasing (decreasing, constant) returns to scale where the case of constant returns

to scale corresponds to the Holmstrom and Milgrom (1987) stationary outcome. Effects of

the imaginary share on the two sensitivities are greatest at the initial date, and converge

to zero at the final date.

This paper is related to the recent literature on contracting under ambiguity uncertain-

ties. Weinschenk (2010) examines linear contracts for a discrete-time contracting problem

under ambiguity between the risk-ambiguity neutral principal and risk-ambiguity averse

agent, but does not consider volatility-ambiguity sharing rules, because of the limitation

of the discrete-time model. Szydlowski (2012) considers a dynamic contracting problem

in the presence of the agent’s limited liability and ambiguity about the agent’s effort cost,

and show that the optimal contract provides excessive incentives. Miao and Rivera (2015)

also consider a continuous-time contracting case, and show that the optimal contract is a

tradeoff between incentives and ambiguity sharing. Both Szydlowski and Miao and Rivera

extend Sannikov (2008) by introducing ambiguity uncertainties into drifts of their out-

comes, but not into volatilities, and that the two contracting parties have heterogeneous

beliefs/perceptions: the agent faces no ambiguity, but the principal has to deal with am-

biguity. In order to examine pure ambiguity effects on the optimal contract without being

complicated by potential information-asymmetry issues, we assume, in this paper, that

the two individuals share homogeneous beliefs about mean-volatility joint ambiguity un-

certainty.7

7After the first version of this paper (2014) under a different title was circulated, Mastrolia and Possamäı’s
(2015) work came to my attention. The authors consider an extended version of Holmstrom-Milgrom (1987),
allowing the volatility but not the mean to be ambiguous. They assume heterogeneous ambiguity beliefs
between the principal and agent about the volatility of the outcome process. Then, information asymmetry
and learning problems can simultaneously arise in their model, which can be potentially interesting issues
for future research. In this paper, we avoid these issues by considering homogenous ambiguity beliefs.
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This paper is also related to the volatility control literature. Volatility control problems

in continuous-time contracting appear in early papers without ambiguity uncertainties, such

as Sung (1995) and Ou-yang (2003). Both authors manage to solve their problems, because

their problems can be transformed into Markovian volatility control problems as shown in

Schättler and Sung (1993), and because the realized (ex post) volatility is a predictable

process. We derive a Hamiltonian for mean-volatility control problems in the Appendix,

directly extending Schättler and Sung. Recently, Cvitanić, Possamäı and Touzi (2014,

2015) examine volatility control issues in strong formulation to derive a path-dependent

Hamilton-Jacobi-Bellman (HJB) equation for a continuous-time contracting problem with-

out ambiguity uncertainties. Epstein and Ji (2013) consider their volatility control problems

with singular measure changes in weak formulation utilizing Peng’s (2006) G-Brownian Mo-

tion. For our mean-volatility control problem, we utilize the control-theoretic method which

has recently been developed in the literature: see for example, Soner, Touzi, and Zhang

(STZ, 2011a,b, 2012, 2013), Nutz and Soner (2012), Nutz (2012a,b), Bouchard and Nutz

(2012), and Pham and Zhang (2014).

The rest of the paper is organized as follows. Section 2 describes the continuous-time

contracting model with the outcome subject to mean-volatility joint ambiguity uncertain-

ties. Before starting the analysis of the model, in Section 3, we narrow down, without

loss of generality, the class of admissible contracts to a manageable subclass. Then, we

start the analysis from Section 4, by presenting the first-best solution as a benchmark,

and examine details of the second-best case in Section 5, where we show that the optimal

contract depends not only on the outcome but on its quadratic variation, and that the

most pessimistic priors of the two contracting parties are symmetrized. Section 6 provides

an example using a linear-quadratic case with its joint-ambiguity parameters lying in a

quadratic set. Finally, we summarize the paper in Section 7. The Appendix contains most

of proofs and the martingale method for mean and volatility controls.

5



Notation.

Y : the outcome or coordinate process of Ω(⊂ C[0, 1]), such that Yt(ω) = ωt, ∀ω ∈ Ω.

P: the family of admissible singular and equivalent probability measures.

Po: the subfamily of amissible singular measures.

{Ft}, {F̂t}: resp., the natural filtration generated by Y , and the universal filtration defined

in Section 2.

(u, v): u and v, resp., are tuples of control and ambiguity parameter processes. In Sections

A.1 and A.2, ut ∈ Rn and vt ∈ Rm. In the text, ut = et ∈ R and vt = (µt, νt) ∈ R2.

(µ, ν), (µµµ,ννν): resp., ex ante perceived, and ex post realized/true ambiguity parameter pro-

cesses.

U , D: subsets of Rn and Rm, resp., for ut and vt for each t.

Ut(Y ), Dt(Y ): time-state dependent subsets of U and D, resp. In the text, Ut(Y ) ≡ U and

Dt(Y ) = {(µt, νt) ∈ D |π(µt, νt, t, Y ) ≥ 0}.

Û , D̂: classes of F̂P -progressively measurable control and ambiguity-parameter processes,

u and v, resp., with their values (ut, vt) ∈ U ×D for each t.

U1
t ,D1

t : subclasses of Û and D̂, resp., with (us, vs) ∈ Us(Y ) ×Ds(Y ) where s ∈ [t, 1]. For

brevity, U1
0 ≡ U and D1

0 ≡ D.

f(u, v, .), σ(u, v, .): resp., drift and diffusion rates of Y under P u,v(∈ P).

Φ, Σ : classes of admissible f and σ, resp.

Ωσ(⊂ Ω): a collection of all sample paths of Y with d〈Yt〉 = σ2
t dt.

HA, HP , Ho: resp., Hamiltonians for the agent, the principal, and a general case.
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L1
P : L1

P -closure of bounded uniformly continuous functions on Ω.

Ψ, Ψ̄: classes of admissible contracts, defined in (2) and (9), resp.

βt, θt: resp., outcome- and volatility-sharing sensitivities at time t.

2 The Model

We introduce ambiguity uncertainty to the standard continuous-time agency problem with

one principal and one agent, whose preferences are represented by constant absolute risk

aversion with their CARA coefficients given by γP and γA, respectively, where γP , γA ≥ 0.

The time horizon of interest is the unit interval [0, 1]. The principal has an asset in place

which will produce a cumulative monetary outcome of Yt at time t(∈ [0, 1]). The agent has

expertise to manage the asset, and considers entering into a contract with the principal.

His reservation utility is − exp (−γAW0), where W0 ∈ R. At time 0, both the principal

and agent sign a contract S subject to the participation constraint which requires S to

guarantee, at the least, the agent’s reservation utility. The contract specifies how the two

contracting parties share the outcome, as a function of objectively verifiable information

based on the whole history of the outcome, Y ≡ {Yt; t ∈ [0, 1]}. After time 0, the agent

exerts effort to improve the probability distribution of the outcome process Y . Both the

principal and agent observe the whole history of Y as it realizes.

The uncertainty of the outcome Y is characterized by the filtered probability space

(Ω, F̂ , {F̂t}, {P ∈ P}), where Ω is the space of all continuous functions on [0,1] with each

function starting at zero, i.e., Ω := {ω ∈ C[0, 1] |ω(0) = 0}; {F̂t} is the universal filtration,

F̂1 = F̂ , and P is the admissible family of probability measures, including singular mea-

sures. The probability space is the common knowledge between the principal and agent,

i.e., there is no asymmetric information.

We assume that the universal filtration satisfies the set of properties listed in STZ

(2011a, Definition 2.2). The filtration is constructed as follows. Let {Ft} be the natural
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filtration generated by Y , and F+
t =

⋂
s>tFs. Also let FPt := F+

t ∨ NP (F+
t ), for each

P ∈ P, where

NP (F+
t ) =

{
A ∈ Ω | there exists Ã ∈ F+

t such that A ⊂ Ãand P (Ã) = 0
}
.

Then the universal sigma algebra at time t is

F̂Pt =
⋂
P∈P

(
FPt ∨NP

)
,

where NP(:=
⋂
P∈P NP (F1)) is the collection of so-called P-polar sets, each of which is

a null set for all admissible probability measures. The universal filtration {F̂t}(≡ {F̂Pt })

is necessary for each admissible stochastic process to be well-defined not only on its own

support of the probability measure, but on its null sets where other admissible (singular)

probability measures live.

The family P is constructed by expanding the subfamily Po of (partially or completely)

singular measures, with absolutely continuous measures to each singular measure in the

subfamily. Those singular measures are constructed by partitioning Ω by the quadratic

variation (QV) of each sample path, and by endowing each partition Ωσ with a Wiener

measure P σ as in Lemma A.1. Then, we use the Girsanov Theorem to generate absolutely

continuous measures with respect to each P σ(∈ Po). See the Appendix for details.

Each admissible measure P e,v(∈ P) is indexed by the agent’s effort process e and the

pair v of uncertain/ambiguious parameter processes (µ, ν). Let U and D̂, respectively, be

the classes of all F̂P -progressively measurable control and ambiguity-parameter processes

such that e(∈ U) : [0, 1]× Ω→ U(⊂ R) and v(= (µ, ν) ∈ D) : [0, 1]× Ω→ D(⊂ R×R+),

respectively, where R+ is the strictly positive part of the real line. Let Dt(Y ) := {(µ, ν) ∈

D |π(µ, ν, t, Y ) ≥ 0}, where π : D × [0, 1]× Ω → R is continuously differentiable in (µ, ν).

Also let D := {v ∈ D̂ | v(t, Y ) ∈ Dt(Y ), t ∈ [0, 1]}. Then D is a subclass of D̂ constrained

by Dt(Y ) for all t. We assume that both U and Dt(Y ) for all t are compact and convex
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with nonempty interiors.8 Throughout the paper, the pair of arguments (t, Y ) denotes

(t, {Ys, 0 ≤ s ≤ t}).

Under each P e,v ∈ P, the outcome (or the coordinate) process evolves according to the

following scalar-process dynamics:

dYt = f(et, µt, νt, t, Y )dt+ σ(νt, t, Y )dBe,v
t , (1)

with Y0 = 0, where Be,v
t is a P e,v-standard Brownian Motion (BM). The drift and diffusion

rates, f and σ, respectively, are members of classes Φ and Σ of nonanticipative functionals,

which are defined in Assumptions A.1 and A.2 with u = e and v = (µ, ν). In partic-

ular, the class Σ satisfies the uniform Lipschitz continuity property. As can be seen in

the Appendix, admissible conditional probability measures, P e,vt and P e
′,v′

t , are mutually

absolutely continuous if σs = σ′s for all s ∈ (t, 1], and mutually singular if σs 6= σ′s all

s ∈ (t, 1].

The agent is allowed to privately choose effort e(s, Y ), incurring a cumulative private

monetary cost of
∫ t

0 c(es, s, Y )ds up to time t, where c is also a nonanticipative functional.

Furthermore, we assume that f , σ and c, are continuously differentiable in (e, µ, ν), ν, and

e, respectively, that both f and c are strictly increasing in e, and that σ is strictly increasing

in ν. We let ce and fe denote partial derivatives of c and f , respectively, with respect to e.

Also let vvv(∈ D) be the pair of the true parameter processes (µµµ,ννν). Given (e, S), if P e,vvv

were known, then the agent’s expected utility would be

Ee,vvv
[
− exp

{
−γA

(
S −

∫ 1

0
c(et, t, Y )dt

)}]
s.t. dYt = f(et,µµµt, νννt, t, Y )dt+ σ(νννt, t, Y )dBe,vvv

t ,

where Ee,vvv is the expectation operator under probability measure P e,vvv. However P e,vvv is

unknown/ambiguous, except that P e,vvv ∈ P.

8This condition is to satisfy the Karush-Kuhn-Tucker (KKT) constraint qualification conditions for
almost all t ∈ [0, 1]. See, for instance, Takayama (1985) or Bazaraa, Sherali and Shetty (2006) for the
constraint qualification conditions.
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We assume, as suggested by Gilboa and Schmeidler (1989), that both the principal and

agent are risk-and-ambiguity averse with maxmin utilities. In particular, given a contract

S, the agent chooses (e, v) to solve the following problem:

sup
e∈U

inf
v∈D

Ee,v
[
− exp

{
−γA

(
S −

∫ 1

0
c(et, t, Y )dt

)}]
s.t. dYt = f(et, µt, νt, t, Y )dt+ σ(νt, t, Y )dBe,v

t .

It is well known that the case of a risk-neutral agent is the limiting case of this problem

with γA ↓ 0. Given this maxmin utility and effort process e, the agent chooses the worst

prior P e,v
∗(e), where v∗(e) = (µ∗(e), ν∗(e)). Under each prior P e,v, the agent behaves as if

the QV, d〈Yt〉, were equal to σ2(ν, t, Y )dt with probability one, even though he knows that

σ2(ν, t, Y ) bears no relation to the true σ2(ννν, t, Y ). In this paper, we call σ2(ν, t, Y ) the ex

ante perceived QV (density) under prior P .,v, and σ2(ννν, t, Y ) the ex post realized QV.

As is the case with the perceived σ2(ν, t, Y ), the perceived µ(t, Y ) is unlikely to be equal

to the realized µµµ(t, Y ) which in turn conveys zero information about µµµ(t+ dt, Y ). That is,

brand-new ambiguity uncertainties on both mean and volatility keep arising continuously

over time. Thus, neither the future mean nor the future volatility can be predicted through

Bayesian learning. This is in agreement with the typical and implicit assumption in the

ambiguity literature that ambiguity uncertainties are “generated by hard to interpret, am-

biguity signals” continuously over time.9 See Chen and Epstein (2002), and Epstein and

Schneider (2010) for explanation of ambiguity aversion without learning.

On the other hand, the principal chooses S from the admissible class Ψ to maximize

inf
v∈D

Ee,v [− exp {−γP (Y1 − S)}] ,

9In other words, at each time t, the outcome and its volatility ambiguity uncertainties up to time t, i.e.,
{(s, Ys, σ(ννν, s, Y )); s ∈ [0, t]}, are completely resolved, but the resolution provides zero information about
future ambiguity uncertainties, i.e., {(µµµs, νννs); s ∈ (t, 1]}. One may imagine that, at each time t, time-t
‘ambiguity urn’ determining (µµµt, νννt) is completely revealed and replaced with a brand-new ‘urn’ for time
t + dt. Consequently, neither (µt, νt) nor (µµµt+dt, νννt+dt) has anything to do with (µµµt, νννt), and the agent
simply chooses the worst pair of (µt, νt) based on information up to time t, {(s, Ys); s ∈ [0, t]}, regardless
of {(µµµs, νννs) : s ∈ [0, t]}. Note that this consequence is directly from the definition of the ambiguity in the
literature, and has nothing to do with the singular change of measures.
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subject to appropriate constraints. The precise statement of the principal’s problem shall

be given, as we proceed. We assume that the admissible class Ψ of contracts consists of

F̂P1 -measurable sharing schemes S’s as follows:

Ψ :=

{
S

∣∣∣∣∣ S is F̂P1 -measurable, and under all P e,v ∈ P,

− exp
{
−γA

(
S −

∫ 1
0 c(et, t, Y )dt

)}
∈ L1

P

}
, (2)

where L1
P is the L1

P -closure of bounded uniformly continuous functions on Ω. See Nutz

(2012b, Section 4) for the definition of L1
P .

Before proceeding to the analysis of our contracting problem, let us define the agent’s

and principal’s Hamiltonians HA and HP constrained by Dt(Y ), respectively as follows:

for (e, (µ, ν), p1, p2, t, Y ) ∈ U ×Dt(Y )×R×R× [0, 1]× Ω,

HA(e, µ, ν; p1, p2, t, Y ) := −c(e, t, Y ) + ϕA(e;µ, ν; p1, p2, t, Y ), (3)

and for (e, β, θ, (µP , νP ), p, t, Y ) ∈ U ×R2 ×Dt(Y )×R× [0, 1]× Ω,

H0P (e, β, θ;µP , νP ; p, t, Y )

:= −c(e, t, Y ) + ϕP (e, β, θ;µP , νP ; p, t, Y ) + min
(µA,νA)∈Dt(Y )

ϕA(e;µA, νA;β, θ, t, Y ). (4)

Also let

ϕA(e;µ, ν;β, θ, t, Y ) := βf(e, µ, ν, t, Y )−
(γA

2
β2 − θ

)
σ2(ν, t, Y ) (5)

ϕP (e, β, θ;µ, ν; p, t, Y ) := (1− β + p) f(e, µ, ν, t, Y )

−
[
θ +

γP
2

(1− β + p)2
]
σ2(ν, t, Y ), (6)

HP (e, θ;µP , νP ; p, t, Y ) :=

[
H0P (e, β, θ;µP , νP ; p, t, Y )

s.t. β ≡ ce(e,t,Y )
fe(e,µ,ν,t,Y )

]
. (7)

Assumption 1 Existence of saddle points.10

i. For each (p1, p2, t, Y ) ∈ R × R × [0, 1] × Ω, there exists a saddle point (e∗t , µ
∗
t , ν
∗
t )

such that for all (et, (µt, νt)) ∈ U × Dt(Y ), HA(et, µ
∗
t , ν
∗
t , .) ≤ HA(e∗t , µ

∗
t , ν
∗
t , .) ≤

HA(e∗t , µt, νt, .).

10See Sion (1958) and Rockafellar (1970) for minimax theorems.
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ii. For each (p, t, Y ) ∈ R×[0, 1]×Ω, there exists a saddle point (e∗t , β
∗
t , θ
∗
t , µ
∗
t , ν
∗
t ) such that

for all (et, βt, θt, (µt, νt)) ∈ U×R2×Dt(Y ), HP (et, θt, µ
∗
t , ν
∗
t , .) ≤ HP (e∗t , θ

∗
t , µ
∗
t , ν
∗
t , .) ≤

HP (e∗t , θ
∗
t , µt, νt, .).

iii. For each (p, t, Y ) ∈ R × [0, 1] × Ω, there exists a saddle point (e∗t , β
∗
t , θ
∗
t , µ
∗
t , ν
∗
t )

such that for all (et, βt, θt, (µt, νt)) ∈ U × R2 × Dt(Y ), H0P (et, βt, θt, µ
∗
t , ν
∗
t , .) ≤

H0P (e∗t , β
∗
t , θ
∗
t , µ
∗
t , ν
∗
t , .) ≤ H0P (e∗t , β

∗
t , θ
∗
t , µt, νt, .).

It shall be shown later that HA and HP , respectively, are related to the agent’s and

principal’s second-best certainty-equivalent (CEQ) wealth levels; and H0P to that of the

principal’s first best. The CEQ is defined in (A.11). Given the above formulation, a general

method to deal with the principal’s and agent’s problems is developed in the Appendix,

and utilized in the next sections.

3 Representation of Admissible Contracts

We start the analysis of our contracting problem, by narrowing down the original admis-

sible class Ψ to a manageable subclass Ψ̄ without affecting the principal’s utility, as seen

frequently in the standard continuous-time contracting literature, where Ψ̄ shall be defined

shortly. LetWS,e,v(∈ R) be the CEQ wealth level of the expected utility the agent achieves

with an arbitrary choice of (e, v) given S ∈ Ψ, where v = (µ, ν). Then,

− exp
(
−γWS,e,v

)
= Ee,v

[
− exp

{
−γA

(
S −

∫ 1

0
c(es, µsνs, s, Y )ds

)}]
.

A comment is in order. For control problems with singular measures, an important

concept is the quasi-sure (q.s.) measurability, which is defined by Denis and Martini (2006)

and STZ (2011a): a property is said to hold P-q.s., if it holds for all P ∈ P, a.s.. Since P is

an enlarged version of Po with absolutely continuous measures, each of which is dominated

by a member in Po, if a stochastic property holds Po-q.s., then so does it P-q.s..
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Theorem 1 Given a contract S ∈ Ψ, suppose that the agent arbitrarily chooses admissible

(e, (µ, ν)) ∈ U ×D. Then, there exists a unique Po-q.s. square integrable processes, (βt, θt)

such that S can be represented in the following form: Po-q.s.,11

S =WS,e,v +

∫ 1

0

{
c(et, t, Y )− βtf(et, µt, νt, t, Y ) +

[γA
2
β2
t − θt

]
σ2(νt, t, Y )

}
dt

+

∫ 1

0
θtd〈Yt〉+

∫ 1

0
βtdYt. (8)

If θt were set to zero for all t, the representation (8) of the salary scheme S would be

identical to that of Schättler and Sung (1993). Recall that d〈Yt〉(≡ σ2(νννt, t, Y )dt) is the

realized QV, whereas σ2(νt, t, Y )dt is the agent’s ex-ante perceived QV under his worst

prior. In the absence of volatility ambiguity, σ2(νννt, t, Y ) = σ2(νt, t, Y ), a.s., and thus the

dependence of S on the realized QV would be unnecessary. The salary scheme (8) implies

that
∫ 1

0 θt(σ
2(νννt, t, Y ) − σ2(νt, t, Y ))dt is an extra amount the agent demands in addition

to the standard salary which he would be paid without ambiguity uncertainty. Of course

this extra amount can be positive or negative depending on the realization of σ(νννt, t, Y ).

In both the first- and second-best contracting cases, Theorem 1 suggests that, without

loss of generality, the principal can only consider the following subclass Ψ̄ of contracts which

satisfy the agent’s reservation utility:

Ψ̄ :=
{
S ∈ Ψ |S in the form (8) with WS,e,v =W0

}
. (9)

Then, the principal chooses a contract S from Ψ̄ by choosing a set of processes (et, µt, νt, βt, θt),

subject to appropriate constraints.

4 First-Best Contracting

Recall that given contract S, the agent chooses his effort e ∈ U and prior (µA, νA) ∈ D

for the ambiguity uncertainty. In the first best, the principal instructs/forces the agent to

11A similar class is also considered in Cvitanić, Possamäı and Touzi (2014) who examine volatility control
issues in their principal-agent problems without ambiguity uncertainties.
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choose a specific effort process. Such a forcing contract is possible, perhaps because the

agent’s effort choice can be verifiably observed/perfectly monitored. However, the agent’s

choice of a prior may not be forced, as it is a matter of private perception. Thus, the

principal’s problem can be stated as fol1ows.

Problem 1 (First-best contracting.) Choose a contract S by solving the following problem.

sup
S ∈ Ψ, e ∈ U
(µA, νA) ∈ D

inf
(µP ,νP )∈D

Ee,vP [− exp {−γP (Y1 − S)}]

s.t. (i) dYt = f(et, µ
P
t , ν

P
t , t, Y )dt+ σ(νPt , t, Y )dBe,vP

t ,

(ii) (µA, νA) ∈ arg inf
(µ̂,ν̂)∈D

Ee,v̂
[
− exp

{
−γA

(
S −

∫ 1

0
c(e, t, Y )dt

)}]
s.t. dYt = f(et, µ̂, ν̂, t, Y )dt+ σ(ν̂, t, Y )dBe,v̂

t ,

(iii) Ee,vA
[
− exp

{
−γA

(
S −

∫ 1

0
c(et, t, Y )dt

)}]
≥ − exp (−γAW0) ,

where vA = (µA, νA) and vP = (µP , νP ). Constraint (ii) allows the agent to choose his worst

pair of ambiguity parameter processes. Constraint (iii) is for his participation. As usual,

we assume that if one contracting party is indifferent among many choices at optimum,

then he/she chooses the one that is most favored by the other party.

Theorem 2 (First best.) Assume that γA, γP ≥ 0, but γA and γP are not simultaneously

zero. Also assume that minµ,ν ϕA(e;µ, ν; .) exists for each e, and that Assumption 1-iii

holds.12 Suppose that the optimizers for the principal and agent, (et, θt, µ
P
t , ν

P
t ) and (µAt , ν

A
t )

lie in the interiors of their respective domains, for all t ∈ [0, 1]. Then, in the first best, the

worst priors of the principal and agent are symmetrized such that (µAt , ν
A
t ) = (µPt , ν

P
t ) =

(µct , ν
c
t ) ∈ Dt(Y ). Moreover, there exists a unique Po-q.s. square integrable process Z0P

t

12If γA = γP = 0, then one can show that there are infinitely many optimal contracts with their sensitiv-
ities βt’s to the outcome being any numbers between 0 and 1, for t ∈ [0, 1] a.e., and that the worst priors of
the two parties are still equalized.
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such that

(µct , ν
c
t ) ∈ min

(µ̄,ν̄)∈Dt(Y )
f(et, µ̄, ν̄, t, Y )− 1

2

γAγP
γA + γP

(1 + Z0P
t )σ2(ν̄, t, Y ), (10)

and that the first-best optimal contract S is given as follows: Po-q.s.,

S =W0 +

∫ 1

0

(
c(et, t, Y )− βtf(et, µ

c
t , ν

c
t , t, Y ) +

γA
2
β2
t σ

2(νct , t, Y )
)
dt+

∫ 1

0
βtdYt, (11)

where βt = γP
γA+γP

(
1 + Z0P

t

)
, and 1 + Z0P

t = ce(et,t,Y )
fe(et,µct ,ν

c
t ,t,Y ) .

The structure of the optimal contract (11) indicates that βt and 1 − βt are, respectively,

the agent’s and principal’s instantaneous nominal shares of the outcome Y . In addition

to her nominal share 1− βt, the principal perceives an imaginary extra share, Z0P
t , which

is in fact the sensitivity of the CEQ of her expected remaining utility to the outcome

process. If Z0P
t 6= 0, then the principal effectively perceives the quantity, 1− βt + Z0P

t , as

her instantaneous share of the outcome.13 If Z0P
t > (<)0 at optimum, the last statement

of the theorem, ce/fe = 1 + Z0P
t , implies that the marginal cost of effort ce is greater

(less) than the marginal product fe. This deviation from the rule of “marginal product

of labor” occurs, because current effort can affect not only current production, but future

productivity. A similar process like Z0P
t also appears in the second best in the next section,

where we discuss in more detail.

Theorem 2 further indicates that the first-best contract, as usual, requires an outcome(-

ambiguity uncertainty) sharing rule
∫ 1

0 βtdYt, but it does not require an extra sharing rule

for volatility-ambiguity uncertainty. The reason is that the outcome-sharing rule alone

symmetrizes overall exposures of the two parties to ambiguity uncertainties in terms of

both the outcome and its volatility, with their risk aversion taken into account.

To see this, recall that the first-best contract is to optimally allocate the outcome

uncertainty between the two parties. The outcome uncertainty is optimally shared when

13For the agent, his nominal and effective shares turn out to be optimally the same. See footnote 15.
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marginal dollar-risk premia perceived by the two parties on their respective payoffs are

equalized, with risk aversion taken into account. Note that the principal’s and agent’s

effective exposures to the uncertainties, are γAβtdYt and γP (1−βt +Z0P
t )dYt, respectively,

which are equalized if βt is given as in Theorem 2. With the already equalized exposures,

the two parties demand the same dollar-risk premia, which implies their worst priors are

symmetrized without necessity of an extra volatility-sharing rule.

Consequently, the structure of the first-best contract under ambiguity uncertainties

remains the same as that of the standard first-best contract under risk uncertainties, except

that commonly perceived parameter-pair process (µct , ν
c
t ) has to be distinguished from true

parameter-pair process (µµµt, νννt). In the second best, however, the joint ambiguity alters

the well-known structure of the standard second-best contract, as is to be seen in the next

section.

5 Second-Best Contracting

In the second best, the agent privately chooses not only his worst prior P e,v but effort

process e. Taking into account his responses, the principal chooses a contract S as follows.

Problem 2 (Second-best contracting.) Choose a contract S by solving the following prob-

lem.

sup
S ∈ Ψ, e ∈ U
(µA, νA) ∈ D

inf
(µP ,νP )∈D

Ee,vP [− exp {−γP (Y1 − S)}]

s.t. (i) dYt = f(e, µP , νP , t, Y )dt+ σ(νP , t, Y )dBe,vP
t ,

(ii) (e, µA, νA) ∈ arg sup
ê∈U

inf
(µ̂,ν̂)∈D

E ê,v̂
[
− exp

{
−γA

(
S −

∫ 1

0
c(û, t, Y )dt

)}]
s.t. dYt = f(ê, µ̂, ν̂, t, Y )dt+ σ(ν̂, t, Y )dBê,v̂

t ,

(iii) Ee,vA
[
− exp

{
−γA

(
S −

∫ 1

0
c(e, t, Y )dt

)}]
≥ − exp (−γAW0) .
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The second constraint is for the incentive compatibility to allow him to privately choose

both effort and a prior. The third is for the agent’s participation. We make the usual

assumption that given many indifferent choices, each party chooses one in favor of the

other party. By Theorem 1, we also replace Ψ with Ψ̄, without loss of generality.

5.1 Agent’s Problem

Given a contract S ∈ Ψ̄ in the form of (8) with (e∗, µ∗, ν∗), the agent may decide to choose

(e, µ, ν), instead of (e∗, µ∗, ν∗). This possibility raises the well-known implementability

issue. We say S[e∗, µ∗, ν∗] is implementable if, given the same S, the agent chooses the

same (e∗, µ∗, ν∗).14 Suppose that the agent is given a salary function S[e∗, µ∗, ν∗]. Then,

his problem at each time t is to optimize his expected remaining utility for unrealized future

compensations as follows:

sup
e∈U1

t

inf
(µ,ν)∈D1

t

Ee,vt

[
− exp

{
−γA

(∫ 1

t

{
−c(es, s, Y )−HA(e∗s, µ

∗
s, ν
∗
s ;βs, θt, s, Y )

}
ds

+

∫ 1

t
θtd〈Yt〉+

∫ 1

t
βsdYs

)}]
,

s.t. dYs = f(es, µs, νs, s, Y )ds+ σ(νs, s, Y )dBe,v
s ,

where U1
t and D1

t are, respectively, U and D restricted to period [t, 1], and HA is the agent’s

Hamiltonian (3), i.e.,

HA = −c(e, t, Y ) + βtf(e, µt, νt, t, Y ) +
(
θt −

γA
2
βt

)
σ2(ν, t, Y ).

Theorem 3 Suppose that Assumptions 1-i and -ii hold. Given a contract S ∈ Ψ̄ with

admissible (e∗t , (µ
∗
t , ν
∗
t ); (βt, θt)) ∈ U × Dt(Y ) × R2, for all t ∈ [0, 1], the agent chooses

(e∗t , µ
∗
t , ν
∗
t ) if and only if

(e∗t , µ
∗
t , ν
∗
t ) ∈ arg max

ê
min
µ̂,ν̂

HA(ê, µ̂, ν̂;βt, θt, t, Y ). (12)

14See Schättler and Sung (1993, Definition 4.1) for the definition of implementable contracts.
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That is, the contract S ∈ Ψ̄ with admissible (e∗t , (µ
∗
t , ν
∗
t ); (βt, θt)) ∈ U ×Dt(Y )×R2 for all

t ∈ [0, 1] is implementable if and only if (e∗t , (µ
∗
t , ν
∗
t )) is a saddle point of HA given (βt, θt).

Moreover, given an implementable salary function in Ψ̄, the agent value function/optimal

expected remaining utility Vt is constant over time: in particular, Vt = − exp(−γAW0).

Theorem 3 simplifies the agent’s incentive compatibility condition to the problem of choos-

ing an effort level e to maximize −c+βf , and a prior (µ, ν) to minimize ϕA(e;µ, ν;β, θ, t, Y ).

The maximization part is familiar from the existing literature, and it immediately implies

the following.

Corollary 1 If the optimal et lies in the interior U , then βt = ce(e,t,Y )
fe(e,µ,ν,t,Y ) .

Theorem 3 also states that the agent’s optimal expected remaining utility at each time

t for unrealized future compensations is constant over time. Intuitively, the constant re-

maining utility is related to the well-known no-wealth effect with exponential utility. See

Schättler and Sung (1997). This result turns out to be useful for intuitive understanding

of the agent’s dynamic decisions in general under the optimal contract. See footnote 15.

5.2 Principal’s Problem

The principal is only concerned with implementable contracts in Ψ̄, because of the following

reason.

Proposition 1 Suppose that Assumption 1-i holds. The principal does not gain by consid-

ering non-implementable contracts in Ψ̄.

Intuitively, for a nonimplementable contract in Ψ̄, the principal can always find, at a lower

cost to herself, an implementable contract which induces the agent to make same decisions

on (e, µA, νA). Hence, Theorems 1 and 3, and Proposition 1 allow the principal to replace,

without loss of generality, both the original class Ψ subject to the two constraints (ii) and
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(iii) in Problem 2 with the subclass Ψ̄ subject to (12). This simplification leads to the

following result.

Theorem 4 Suppose that Assumptions 1-i and -ii hold, that c is convex and f is concave

in e, and that the optimal et lies in the interior U , for all t ∈ [0, 1]. Then, there exists

a unique Po-q.s. square integrable process ZPt such that the principal’s optimal decision

(et, µ
A
t , ν

A
t , µ

P
t , ν

P
t , θt) solves the following problem for all t ∈ [0, 1]: Po-q.s.,

max
ēt,θ̄t

min
(µ̄Pt ,ν̄

P
t )∈Dt(Y )

− c(ēt, t, Y ) + ϕP (ēt, θ̄t, µ̄
P
t , ν̄

P
t ;ZPt , t, Y )

+ ϕA(µ̄At , ν̄
A
t ; ēt, β̄t, θ̄t, t, Y ) (13)

s.t. β̄t =
ce(ēt, t, Y )

fe(ēt, µ̄At , ν̄
A
t , t, Y )

, (14)

(µ̄At , ν̄
A
t ) ∈ arg min

(µ̂,ν̂)∈Dt(Y )
ϕA(ēt, µ̂, ν̂; θ̄t, β̄t, t, Y ), (15)

where (µPt , ν
P
t ) and (µAt , ν

A
t ) are, respectively, the principal’s and agent’s worst ambiguity

parameter pairs. Moreover, the contract S(∈ Ψ̄) with {(et, µAt , νAt , βt, θt)} is optimal.

The principal’s Hamiltonian (13) represents her instantaneous CEQ gain, where the process

ZPt results from the martingale representation theorem applied to her expected utility

optimization. For ease of interpretation, let us rewrite the Hamiltonian in full as follows:

− c(ēt, t, Y ) +
(
1− β̄t + ZPt

)
f(ēt, µ̄

P
t , ν̄

P
t , t, Y )−

[γP
2

(
1− β̄t + ZPt

)2
+ θ̄t

]
σ2(ν̄Pt , t, Y )

+ β̄tf(ēt, µ̄
A
t , ν̄

A
t , t, Y )−

(γA
2
β̄2
t − θ̄t

)
σ2(ν̄At , t, Y ).

As noted in the first-best case, the process ZPt is the sensitivity of her CEQ to instantaneous

changes in the outcome process, and thus the principal recognize ZPt as an imaginary extra

share of the outcome. (See equation (A.16).) If ZPt ≥ 0, then the marginal outcome is

positively correlated with her marginal CEQ. (See Proposition 2 for an example where

ZPt > (<,=) 0 if the asset/outcome exhibits increasing (decreasing, constant) returns to

scale.) Then, the principal dynamically perceives, in effect, as if her instantaneous outcome
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share were (1 − βt + ZPt ), rather than her nominal share (1 − βt), whereas the agent’s

effectively perceived share is the same as his nominal share, βt.
15 Hence we call 1−βt+ZPt

the principal’s ‘effective share’ of the (instantaneous) outcome.

Next, we examine the general structure of the optimal volatility-sharing rule. The prin-

cipal’s choice of θt affects both her own and the agent’s exposures to volatility uncertainty,

as the structures of ϕP and ϕA suggest. Dollar-risk premia/burdens against overall uncer-

tainty exposures at each instant are
[γP

2 (1− βt + ZPt )2 + θt
]
σ2(νPt , t, Y ) to the principal

and
[γA

2 β
2
t − θt

]
σ2(νAt , t, Y ) to the agent. For period (t, t + dt], her promise to transfer

to him a realized dollar amount of θtd〈Yt〉 at time t+ dt reduces his volatility-uncertainty

exposure at time t. The expected time-t value of this amount is θtσ
2(νPt , t, Y )dt to the

principal, and θtσ
2(νAt , t, Y )dt to the agent.

If θt is set to γA
2 β

2
t , then the agent is induced to behave as if he were risk neutral,

ignoring volatility uncertainties, and the principal behaves as if she alone had to take all

volatility ambiguity uncertainties. If θt is set to −γP
2 (1 − βt + ZPt )2, then it is now the

principal that behaves as if she were risk neutral, and the agent that behaves as if he had

to take them all alone. Neither case can be optimal to the principal, and she would like

to strike balance between his and her ambiguity exposures by choosing θt. As a result, the

optimal contract comprises both outcome- and volatility-sharing rules with corresponding

sensitivities (βt, θt) to the realized outcome and volatility, respectively.

In the following theorem, we show that the volatility-ambiguity uncertainty is optimally

shared, when θt is set in such a way that the agent is induced to choose the same worst

prior as that of the principal.

Theorem 5 Suppose that assumptions for Theorem 4 hold, and that the optimizer

15 One may wonder if given S, the agent also effectively perceives his outcome share as βt+ZAt in general.
This is true in general. However, if S is given in the form of (8), Theorem 3 tells us that the agent value
function/expected remaining utility is constant over time, and thus ZAt = 0. That is, his nominal and
effective shares of the outcome coincide with each other, at βt. Roughly, the reason is that the agent’s
current incentive βt rewards not only long- but short-term effects of his current effort on the outcome.
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(et, µ
A
t , ν

A
t , µ

P
t , ν

P
t , θt) lies in the interiors of their respective domains, for all t ∈ [0, 1].

Then, the worst priors of the two contracting parties are symmetrized such that (µAt , ν
A
t ) =

(µPt , ν
P
t ) = (µct , ν

c
t ). Under the symmetrized prior, there exists a unique Po-q.s. square

integrable process ZPt such that the optimal outcome- and volatility-sharing sensitivities

(βt, θt) and the common prior (µct , ν
c
t ) can be expressed as follows.16

βt =
fe + γPβe(σ

c
t )

2

fe + (γP + γA)βe(σct )
2
(1 + ZPt ), (16)

θt =
1

2(1 + ZPt )
βt(1− βt + ZPt )

(
γAβt − γP (1− βt + ZPt )

)
≥ 0, (17)

where βe = ∂
∂e

(
ce(et,t,Y )

fe(et,µct ,ν
c
t ,t,Y )

)
, and

(µct , ν
c
t ) ∈ arg min

(µ̂,ν̂)∈Dt(Y )
(1 + ZPt )f(et, µ̂t, ν̂t, t, Yt)

− 1

2

(
γAβ

2
t + γP (1− βt + ZPt )2

)
σ2(ν̂, t, Yt). (18)

Moreover, 0 < βt ≤ 1 + ZPt .

Remark: If γA = 0, then βt = 1+ZPt and θt = 0; and if γA > 0, then 0 < γP
γA+γP

(1+ZPt ) <

βt < 1 + ZPt and θt > 0.

The outcome-sharing sensitivity βt in the form (16) distinguishes itself from that of the

Holmstrom-Milgrom (1987) stationary case, in the following two aspects: (i) σct is endoge-

nously determined through (18), and (ii) the multiplier (1 + ZPt ) is required for dynamic

consideration. If marginal changes of the principal’s future expected utility and those of

the outcome are positively (negatively) correlated such that ZPt > (<)0, then the optimal

outcome-sharing rule provides the agent with a higher-powered (lower-powered) work in-

centives than the one predicted by the stationary case where ZPt = 0. For example, see

Proposition 2.

16If there were no mean ambiguity, then one can show that a volatility sharing rule is optimal as long as θt
lies in the interval [− γP

2
(1−βt+ZPt )2, γA

2
β2]. That is, θt can optimally be set at zero, and thus the presence

of a volatility sharing rule is not necessary for optimal contracting. This observation is consistent with the
statement in footnote 5, “Disagreement on the worst prior does not arise in contracting (even without a
volatility sharing rule), if either the mean alone or the volatility alone of the outcome is ambiguous.”
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It is striking that the optimal volatility sharing rule symmetrizes the worst priors of the

two contracting parties. The intuition for this result is as follows. Given an outcome-sharing

rule, the equally ambiguity-averse principal and agent could perceive the most pessimistic

prior over mean-volatility ambiguity uncertainties differently from each other, because of

differences in payoff structure and risk aversion. Differential priors for the volatility would

then result in differential risk premia even on identically uncertain payoffs. If the principal

perceives a lower (higher) risk premium under her worst prior than the agent does under

his worst prior, she would like to improve the contract by lowering (raising) his risk burden

until the risk premia individually perceived by themselves are equalized. She achieves the

equalization by choosing θt as in (17), under which their minimands ϕP and ϕA differ only

by a scale factor, and thus their worst priors are equalized, and so are their risk premia.17

Consequently, the optimal volatility-sharing rule in general stipulates that the two con-

tracting parties share the total risk premium or the sum of their individually perceived

risk premia, in proportion to their effective outcome shares (βt, 1 − βt + ZPt ). Recall that

perceived marginal expected-dollar payoffs from an instantaneous change in the outcome

are βtfdt to the agent, and (1− βt +ZPt )fdt to the principal. Also, recall that risk premia

perceived by the principal and agent are RPP :=
[γP

2 (1− βt + ZPt )2 + θt
]
σ2(νPt , t, Y ) and

RPA :=
[γA

2 β
2
t − θt

]
σ2(νAt , t, Y ), respectively. The optimal volatility-sharing rule occurs

as the principal’s and agent’s perceived risk premia per their expected dollar payoffs are

equalized, i.e., RPP /((1− βt + ZPt )f) = RPA/(βtf).

Mains results from the principal problem, thus far, can be summarized as follows: (i) the

optimal contract consists of two sharing rules, one for the usual outcome sharing and the

other for volatility sharing; (ii) the worst priors are symmetrized, and the volatility-sharing

rule equalizes perceived risk premia per expected dollar payoff across the two contracting

17Given that the main concern in optimal contracting is to align interests of the two contracting parties,
one can conjecture that the symmetrization result is generalizable to other types of ambiguity and utility
functions. This issue remains to be of interest for future research.
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parties under the common worst prior; (iii) the principal dynamically perceives, in effect,

her outcome share as (1− βt + ZPt ), rather than (1− βt); and (iv) the first-best volatility-

sharing sensitivity is zero, whereas that for the second best is strictly positive, for γA > 0

and γP ≥ 0.

Even with the unspecified process ZPt , the above analysis has produced most of economic

insights into effects of joint-ambiguity uncertainties on our principal-agent problem. In the

next section, we provide an example where one can explicitly solve for ZPt with the well-

known dynamics programming method.

6 A Linear-Quadratic Case

We consider a special case of the linear-quadratic Markovian moral hazard model examined

in Schättler and Sung (1997), and extend the case by introducing joint ambiguity to it.18

Assume that c(e) = (κ/2)e2 for e, κ > 0, and that the gross profit of the firm is driven by

the following dynamics:

dYt = (ηYt + et + µt)dt+ νtdB
u,v
t , Y0 ∈ R,

where η ∈ R, and ν > 0. If η > (<) 0 exhibiting increasing (decreasing) returns to scale,

then the greater the outcome, the higher (lower) the production efficiency.

Let 0 < µ < µ and 0 < ν < ν and α > 0. Also assume that the mean-volatility joint

ambiguity parameter set D is given by

D =
{

(µ, ν) ∈ [µ, µ]× [ν, ν]
∣∣∣π = µ− α

2
(ν − ν0)2 ≥ 0

}
.

This constraint set is a slightly modified version of ‘the quadratic ambiguity’ introduced

by Epstein and Schneider (2010) and Epstein and Ji (2013): the smaller the coefficient α,

18In order to compute ZPt for non-Markovian cases, one may consider the dynamic programming method
by Cvitanić, Possamäı and Touzi (2015). The process ZPt can also be viewed as a component of the solution
to a second-order backward stochastic differential equation (2BSDE): see Nutz (2012b) and STZ (2012).
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the greater the degree of mean-volatility joint ambiguity. Thus, one may regard 1/α as a

measure of the degree of joint ambiguity uncertainties.

By Theorems 1 and 3, and Corollary 1, it is without loss of generality that the principal

only considers contracts S in the following form:

S =W0 +

∫ 1

0

{
κ

2
e2
t − κet(ηYt + et)− min

(µ̂,ν̂)∈Dt

[
κetµ̂

A
t −

(γA
2
κ2e2

t − θt
)

(ν̂At )2
]}

dt

+

∫ 1

0
θtd〈Yt〉+

∫ 1

0
κetdYt.

Let (µAt , ν
A
t ) ∈ arg min(µ̂,ν̂)∈Dt κetµ̂

A
t −

(γA
2 κ

2e2
t − θt

)
(ν̂At )2. Then, the principal’s utility is

sup
e,µA,νA

inf
µP ,νP

Êe,µ
P ,νP

− exp

−γP
 Y1 − S +

∫ 1
0

1
2γP

(ηYt+et+µPt )2

(νPt )2
dt

−
∫ 1

0
1
γP

ηYt+et+µPt
(νPt )2

dYt




s.t. dYt = νPt dWt, Y0 ∈ R,

where Wt is a Po-universal standard BM. (See the Appendix.) Define the principal’s ex-

pected remaining utility at time t as follows.

J(e, θ, µP , νP ; t, Yt)

= Êe,µ
P ,νP

t

− exp

−γP


Y0 −W0

+
∫ 1
t

{
1

2γP

(ηYs+es+µPs )2

(νPs )2
− κ

2e
2
s + κes(ηYs + es)

+κesµ
A
s −

(γA
2 κ

2e2
s − θs

)
(νAs )2 − θs(νPs )2

}
ds

+
∫ 1
t

{
1− κes − 1

γP

ηYs+es+µPs
(νPs )2

}
νPs dWs




 .

The principal optimal choice of (e, θ;µP , νP ) becomes a dynamic programming problem

under a Markovian environment. Let

Vt :=ess sup
e,θ

inf
µP ,νP

J(e, θ, µP , νP ; t, Yt)

s.t. (µAt , ν
A
t ) ∈ arg min

(µ̂,ν̂)∈Dt
κetµ̂

A
t −

(γA
2
κ2e2

t − θt
)

(ν̂At )2.

Then, one can utilize the Hamilton-Jacobi-Bellman-Isaac (HJBI) equation, Po-quasi surely,

in order to find Vt, which is the well-known HJB equation with the Isaac condition for a
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saddle point.19

Define

Υ(νt) ≡
{

1 + (1 +Rt) γPκν
2
t

} γA exp(η(1− t))
αR2

t

+
ν0

νt
− 1, (19)

where Rt := 1 + (γA + γP )κν2
t . The function Υ arises as the agent faces a tradeoff between

the mean and volatility of the ambiguity uncertainties, while choosing his worst prior.

Proposition 2 Suppose that ν0 > ν > 0, and that Υ(ν) > 0, Υ(ν) < 0: i.e., ν and ν are

sufficiently small and large, respectively, enough to ensure an interior optimum in ν. Then,

the common worst prior (µct , ν
c
t ) at optimum is a unique solution to the following equations,

µct =
α

2
(νct − ν0)2; (20)

Υ(νct ) = 0. (21)

Moreover, the value function Vt is given by V(t, Yt) = −e−γP (ζ(t)Yt+ρ(t)), Po-q.s., where

ζ(t) = eη(1−t) − 1 = ZPt , (22)

ρ(t) = Y0 −W0 +

∫ 1

t

[
eη(1−s)µcs + e2η(1−s) 1 + κγP (νcs)

2
(
1− κγA(νcs)

2
)

2κ (1 + κ(γP + γA)(νcs)
2)

]
ds. (23)

The sharing sensitivities (βt, θt) of the optimal contract are:

βt =
1 + γPκ(νct )

2

1 + (γA + γP )κ(νct )
2
eη(1−t), (24)

θt =
1

2eη(1−t)βt

(
eη(1−t) − βt

) [
γAβt −

(
eη(1−t) − βt

)
γP

]
. (25)

Remark: Equations (20) and (21) imply that the common worst prior depends on time t,

but not on state Yt.

19Note that Vt is called ‘the lower value function’ in the literature on two-person zero-sum games. However,
because of our saddle point assumption, its HJB becomes the same as the HJBI which assumes the lower
and upper value functions to be equalized. See Pham and Zhang (2014) for the justification of the HJBI
equation with controlled volatilities. Our HJBI equation is of the same form as that of the HJB in Schättler
and Sung (1993,1995), except that, roughly speaking, volatilities are treated as controllable in this paper,
but not controllable in that paper. Mastrolia and Possamäı (2015) also use a similar HJBI to ours with
η = 0 and µt = 0.
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Note that if η = 0, then we have a joint-ambiguity version of the Holmstrom-Milgrom

stationary case: (20), (21), (24) and (25) imply that the common prior (µct , ν
c
t ) and (βt, θt)

are constant over time, and thus the optimal contract is linear in Y1 and 〈Y1〉. Intuitively

and not surprisingly, the linearity of the optimal contract is due to the stationarity of

the principal’s problem resulting from the time-state independence of (ct, ft, σt, Dt(Y )).20

Because of this stationarity, the volatility of the principal’s CEQ process turns out to be

zero, i.e., ZPt = 0 over time, which is consistent with Corollary A.1. See Chen and Sung

(2018) for more economic implications.

Finally, straightforward computations produce the following comparative statics.

Corollary 2 (Comparative statics.)

i. Both the commonly perceived mean and volatility increase with the returns-to-scale pa-

rameter η, the degree of ambiguity 1/α, and the agent’s ability 1/κ. That is,
∂µct
∂η ,

∂νct
∂η >

0, and
∂µct
∂α ,

∂νct
∂α ,

∂µct
∂κ ,

∂νct
∂κ < 0.

ii. The outcome-sharing sensitivity increases with the agent’s ability, but decreases with

the degree of ambiguity: i.e., ∂βt
∂κ < 0, and ∂βt

∂α > 0. Moreover, if the principal is

risk neutral, i.e., γP = 0, then the sensitivity also increases with the returns-to-scale

parameter: i.e., ∂βt
∂η > 0.

Note that both η and 1/κ are production-efficiency parameters. Intuitively, the agent’s

high ability in production motivates the principal to provide more incentives to the agent

with a high outcome-sharing sensitivity: ∂βt
∂κ < 0. The same conclusion holds with respect

to η, if the principal is risk neutral: i.e., ∂βt
∂η > 0. If the principal is highly risk averse,

this inequality can be reversed, because her high risk-risk aversion can cause the common

volatility perception to increase with η too fast.

20See Schättler and Sung (1997) or Hellwig and Schmidt (2002) for the well-known intuition together with
a rigorous discrete-time justification of Holmstrom-Milgrom’s linearity result.
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Also, intuitively, an increase in the degree of ambiguity, 1/α, induces both the principal

and agent to perceive more pessimistically about ambiguity uncertainties. As a result, both

parties commonly perceive a higher volatility, i.e.,
∂νct
∂α < 0. Thus, we also have: the higher

the degree of ambiguity, the higher the perceived mean, i.e.,
∂µct
∂α < 0. Given the quadratic

ambiguity constraint D, a higher volatility perception leads him to perceive a higher mean

along the boundary of the constraint. Moreover, as the agent become more pessimistic, his

perceived volatility increases, negatively affecting incentives for the agent to work. Thus

we have ∂βt
∂α > 0.

For
∂νct
∂η > 0 and

∂νct
∂κ < 0, it is somewhat striking that given ambiguity uncertainties, a

marginal increase in production efficiency induces the two contracting parties to perceive a

higher volatility. The reason is that a marginal increase in efficiency marginally increases the

outcome-sharing sensitivity and thus the ambiguity uncertainty exposures to both parties,

leading to greater volatility perceptions.

7 Conclusion

We have examined effects of ambiguity uncertainties about the mean and volatility of the

outcome on optimal contracting. Unlike the existing literature, we distinguish between

ex-post realized and ex-ante perceived volatilities.

In order to investigate our contracting problem under ambiguity, we have extended the

well-known martingale method by allowing volatility controls. Developed for exponential

utility, this method can be easily modified for other utilities such as additively separable

utilities. See, for instance, Schättler and Sung (1993, footnote 11). Although it can be

challenging to obtain general closed-form solutions, we believe that the CARA case in this

paper can serve as a benchmark in conjecturing economics of solutions, if any, to other

general utility cases. See, for instance, Baker and Hall (2004, p775) who use the CARA
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case to infer economics of managerial compensations for managers with constant-relative-

risk-aversion (CRRA) utilities.

Applying the method to the contracting problem, we have shown that the second-

best contract in the presence of the joint ambiguity uncertainties contains two sharing

rules, one for outcome sharing and the other for volatility sharing, and that the realized

compensation is positively associated with the realized volatility. The positive association

can be consistent with frequent executive compensation practices of granting stock options,

as stock option values are sensitive to changes in the realized volatility of the underlying

asset.

However, the first-best contract does not require a volatility-sharing arrangement. Re-

call that the first-best contract is about uncertainty-sharing, whereas the second-best con-

tract is about not only uncertainty-sharing but incentives. In the first best, under the

outcome-sharing rule alone, the outcome ambiguity-uncertainties are already optimally

shared between the two parties. No separate side contract can further improve the outcome-

uncertainty sharing. On the other hand, in the second best, the outcome-sharing rule should

take into consideration effort incentives, as well as uncertainty sharing. For effort incen-

tives, the outcome sharing sensitivity has to be increased beyond that of the first best.

The increase can however upset the balance in uncertainty exposures of the two parties,

inducing differential risk perceptions about ambiguity uncertainties. One can easily see

that differential perceptions, if any, can cause inefficiency in contracting like information

asymmetry problems (without learning) can. We have argued that the inefficiency can be

mitigated by the volatility-sharing side contract, as it induces the symmetrization of their

perceptions.
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A Appendix

A.1 Admissible Probability Measures

Recall that the outcome process Y is the coordinate process. We consider a family of

probability measures, under which the process evolves like Itô processes with different drift

and diffusion rates. It is well known that two probability measures generating different

volatilities/diffusion rates cannot be absolutely continuous with respect to each other. Thus,

needs for singular measure changes arise.

We first construct a class Po of (fully or partially) singular Wiener measures. For this,

we consider sub-sample spaces Ωσ’s of Ω, each of which consists of all sample paths in Ω

with equal quadratic variations over all time t ∈ [0, 1], and for each σ, we define a Wiener

measure on Ω using Ωσ as the support of the measure. Then, we expand Po to P by adding

probability measures which are absolutely continuous with respect to each measure in Po.

All probability measures including singular measures are defined on the universal filtration

{F̂t} which is described in Section 2. We shall precisely define Ωσ, Po and P as we proceed.

Let us first recall the QV process,

〈Yt〉 (ω) = lim
∆t→0

n∑
k=1

∣∣Ytk+1
(ω)− Ytk(ω)

∣∣2 ,
where 0 < t1 < t2 < ... < tn = t and ∆t is the mesh size of the partition. If d 〈Yt〉 = σ2

t dt,

then σt is the volatility/diffusion rate of Yt.

For the general method to be presented in this Appendix, we redefine U and D as subsets

of Rn and Rm, respectively, and U and D as the classes of F̂P -progressively measurable

processes such that u(∈ U) : [0, 1]× Ω→ U(⊂ Rn), and v(∈ D) : [0, 1]× Ω→ D(⊂ Rm).

Assumption A.1 The class Σ consists of diffusion coefficients, σ : U ×D× [0, 1]×Ω −→

R+, which are uniformly bounded, F̂P-progressively measurable, and strictly positive real-

valued functionals, satisfying the uniform Lipschitz condition: there exists a constant K
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such that for all t ∈ [0, 1], (u, v) ∈ U ×D, and Y, Ȳ ∈ Ω,

|σ(u(t, Y ), v(t, Y ), t, Y )− σ(u(t, Ȳ ), v(t, Ȳ ), t, Ȳ )| ≤ K sup
0≤s≤t

|Ys − Ȳs|.

Let Ωσ be a subspace of the original sample space Ω such that, for each admissible

σ(∈ Σ) and each t ∈ (0, 1],

Ωσ
t :=

{
ω ∈ Ωt | 〈ωτ 〉 = 〈ωt〉+

∫ τ

t
σ2
sds, ∀τ ∈ (t, 1]

}
. (A.1)

Then, Ωσ
t consists of all sample paths, each of which has a QV density of σ2

s for all s ∈ (t, 1],

conditional on ωt.
21 Note that Ωσ

t and Ωσ′
t are disjoint subsets of Ωt, if σs 6= σ′s, for all

s ∈ (t, 1], and Ωt is a super set of the uncountable union of Ωσ
t ’s, for σ ∈ Σ. We write Ωσ

0

as Ωσ for brevity.

In what follows, we let σ(t, Y ) ≡ σ(u(t, Y ), v(t, Y ), t, Y ), again for brevity. Then,

σ2(t, Y ) is the QV density of the coordinate process Yt(ω)(≡ ωt), i.e., 〈Yt〉 =
∫ t

0 σ
2(s, Y )ds.

For σ ∈ Σ, we define process W σ
t as follows:

W σ
t ≡

∫ t

0

1

σ(s, Y )
dYs. (A.2)

Note that the QV density of W σ
t (ω) is always equal to one for all ω ∈ Ωσ. Then one can

construct a Wiener measure P σ under which W σ
t becomes a standard BM, as follows.

Lemma A.1 For each σ ∈ Σ, there exists a probability measure P σ under which W σ
t is a

standard BM, and Yt is a martingale with its QV density being σ2
t , P σ-a.s..

Proof: Let P 1 be the classical Wiener measure on Ω such that P 1(Ω1) = 1 and that the

coordinate process Yt becomes a standard BM under (P 1, F̂ ,Ω). Choose σ ∈ Σ. Then, there

exists P σ on Ω such that P σ(Ωσ) = 1, and
∫ t

0
1
σs
dYs is a standard BM under (P σ, F̂ ,Ω).

The reason is that for each ω1 ∈ Ω1 one can find ωσ ∈ Ωσ such that ωσt ≡
∫ t

0 σsdω
1
s for

21This view is also consistent with STZ (2011a, Section 8).
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all t. The converse is true as well. That is, given {ωs : 0 ≤ s ≤ t}, Ω1
t and Ωσ

t are in

one-to-one correspondence for each t ∈ [0, 1]. In fact, Ω1
t ≡ {ω ∈ Ω |ωτ =

∫ τ
t

1
σs
dωσs , ∀τ ∈

(t, 1], ωσ ∈ Ωσ
t }, and Ωσ

t ≡ {ωσ ∈ Ω |ωστ =
∫ τ
t σsdω

1
s , ∀τ ∈ (t, 1], ∀ω1 ∈ Ω1

t }. For all

A ∈ F̂ , set P σ(Aσ) = P 1(A), where Aσ =
{
ωσ |ωσt =

∫ t
0 σsdωs, ∀t ∈ [0, 1], ω ∈ A

}
. Then,

P σ defined on Ω with P σ(Ωσ) = 1 becomes the Wiener measure under which the process

W σ
t (=

∫ t
0

1
σs
dYs) is a standard BM. Thus, the law of ({Yt}, P 1,Ω) is identical to that of

({W σ
t }, P σ,Ω), except for their null sets. 2

Remark If σs 6= σ′s for all s ∈ (t, 1], then conditional probability measures P σt and P σ
′

t are

mutually singular, because Ωσ
t and Ωσ′

t are disjoint subsets of the original conditional

state space Ωt, and P σt (Ωσ′
t ) = P σ

′
t (Ωσ

t ) = 0. For example, if σs = 1 and σ′s = 2, for

all s ∈ [0, 1], then P σt and P σ
′

t are mutually singular for all t ∈ [0, 1]. 2

Thus, Ωσ is the support of the Wiener measure P σ, under which W σ
t is a standard BM

on Ω. Note that W σ
t is defined on the whole Ω, not just on Ωσ. The same is true for

all other stochastic processes and random variables in this paper. Let Po be a class of

singular Wiener measures such that Po := {P σ;σ ∈ Σ}. Then {W σ, P σ ∈ Po} is a family

of standard BM’s.

In fact, one can construct a Po-universal standard BM. Let σσσ2
t (ω)dt ≡ d〈Yt(ω)〉, ∀ω ∈ Ω,

i.e., σσσ2
t (ω) is the QV density of ω. Also let, for σσσs > 0, s, t ∈ [0, 1],

Wt :=

∫ t

0

1

σσσs(ω)
dYs(ω).

Then Wt is a Po-standard BM, i.e., Wt = W σ
t a.s., under each P σ ∈ Po. In particular, Wt

shares identical sample paths with W σ
t on Ωσ, i.e., Wt(ω) = W σ

t (ω), and σσσt(ω) = σ(t, Y ) on

Ωσ. Hence, Wt is a Po-universal standard BM, or a Po-aggregator of the family {W σ, P σ ∈

Po}.
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Next, we expand Po to P by adding a collection of probability measures that are

absolutely continuous with respect to each P σ ∈ Po. For this, we introduce another class

Φ of F̂Po-progressively measurable functionals.

Assumption A.2 The class Φ is the collection of functionals, f : U ×D× [0, 1]×Ω→ R,

with the following properties: for each (u, v) ∈ U × D and σ(u, v, t, Y ) ∈ Σ, f(u, v, t, Y ) is

F̂Po-progressively measurable,
∫ t

0
f2(u,v,t,Y )
σ2(u,v,t,Y )

ds <∞ path by path for all t ∈ [0, 1], and there

exists a constant K such that

f(u, v, t, Y )

σ(u, v, t, Y )
≤ K

(
1 + max

0≤s≤t
|Ys|
)
, ∀(u, v, t, Y ).

Let

ϑσ,ft := exp

(∫ t

0

f(u, v, s, Y )

σ(u, v, s, Y )
dWs −

1

2

∫ t

0

f2(u, v, s, Y )

σ2(u, v, s, Y )
ds

)
. (A.3)

Then, this is a P σ-exponential martingale for σ ∈ Σ. We define a new probability measure

P σ,f by dP σ,f = ϑσ,f1 dP σ on F̂1. That is, P σ,f is absolutely continuous with respect to P σ.

If f ≡ 0, then P σ,f = P σ ∈ Po. In general, by the Girsanov theorem,

Bσ,f
t := Wt −

∫ t

0

fs
σs
ds

is a standard BM under P σ,f for each (σ, f) ∈ Σ×Φ. Since dYt(ω) = σσσt(ω)dWt under Po,

and σσσt(ω) = σt under P σ ∈ Po, we have, under each P σ,

dYt = σσσt(ω)dWt = σtdWt (A.4)

Then, Assumption (A.1) implies that there exists a unique strong solution to this stochastic

differential equation (A.4).22 (See Elliott (1982, Theorem 14.6)). Moreover, there is a

unique Po-quasi surely aggregated strong solution. See STZ (2011a) and Nutz (2012), for

the aggregation result.

22The classical Peng’s G-Brownian Motion can be interpreted as the coordinate process Y of Ω under a
subfamily of Po.
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Using (A.4), we expand Po to the family P of admissible probability measures on Ω as

follows:

P :=
{
P σ,f | dP σ,f = ϑσ,f1 dP σ, f ∈ Φ, P σ ∈ Po

}
. (A.5)

For brevity, we let

P σ,f ≡ P σ(u,v,.),f(u,v,.) ≡ P u,v.

There can be multiple (u, v)’s corresponding to P σ,f such that σ(u, v, .) = σ(u′, v′, .) and

f(u, v, .) = f(u′, v′, .). Then, we simply have P u,v = P u
′,v′ , without affecting our results.

Under P u,v ∈ P, we rewrite the dynamics of process Y in (A.4) as follows:

dYt = f(u, v, t, Y )dt+ σ(u, v, t, Y )dBu,v
t . (A.6)

The general method in this Appendix is based on the outcome dynamics in (A.6). For

our agency problem in the text, however, we consider a special case under the following

simplifying assumptions: n = 1, m = 2, u = e, v = (µ, ν) and σ is independent of (e, µ).

Then we can write the dynamics of the outcome as in (1), and P u,v = P e,v = P e,(µ,ν).

A.2 The mean-volatility control problem

In this section, we extend the martingale method of Schättler and Sung (1993), by allowing

the agent to control both the mean and volatility of the outcome process. We derive a

Hamiltonian for our general mean-volatility control problem in weak formulation.

Given the family P of singular and absolutely continuous probability measures as defined

in (A.5), we work on a general mean-volatility control problem of which our agency problem

is a special case. We assume the classes U and D of admissible control and ambiguity

parameter processes {(u, v)} are constrained by the time-state dependent compact and

convex sets Ut(Y )(⊂ U) and Dt(Y )(⊂ D) with nonempty interiors for each t, such that

ut ∈ Ut(Y ) and vt ∈ Dt(Y ). Moreover, we let U1
t and D1

t , respectively, be the sets of
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admissible u’s and v’s restricted by Ut(Y ) and Dt(Y ) for time period [t, 1]. Then, U ≡ U1
0

and D ≡ D1
0. We consider the following general problem:

sup
u∈U

inf
v∈D

Eu,v
[
− exp

{
−γ
(
ξ(Y ) +

∫ 1

0
g(.)ds+

∫ 1

0
q(.)d〈Ys〉+

∫ 1

0
h(.)dYs

)}]
(A.7)

s.t. dYt = f(u, v, t, Y )dt+ σ(u, v, t, Y )dBu,v
t ,

where Bu,v
t (= Wt −

∫ t
0
fs
σs
ds) is the standard BM under P u,v. We assume γ > 0 to derive

all results of this section, and interpret the limit as the risk-neutral agent case.23 Let g, q,

h, f , and σ be real-valued functionals such that

g, q, h, f : U ×D × [0, 1]× Ω→ R,

σ : U ×D × [0, 1]× Ω→ R+.

The general problem (A.7) covers our principal’s and agent’s problems as special cases.

Let

ϑ̂1 =
dP u,v

dP̂ u,v
= exp

(∫ 1

0

f

σ2
dYt −

1

2

∫ 1

0

f2

σ2
s

ds

)
. (A.8)

Then, the problem can be equivalently written as

sup
u∈U

inf
v∈D

Êu,v
[
− exp

{
−γξ(Y )−

∫ 1

0
Ĝsds−

∫ 1

0
ΓsdYs

}]
(A.9)

s.t. dYt = σ(u, v, t, Y )dWt,

where

Ĝt = γg(.) + γq(.)σ2 +
1

2

f2

σ2
,

Γt = γh(.)− f

σ2
.

Hence, the original general problem is transformed into a pure volatility control problem.

By the construction of Po and P, P̂ u,v ∈ Po if and only if P u,v ∈ P where dP u,v ≡ ϑ̂1dP̂
u,v.

23That is, all results in this paper with γ = 0 hold for the risk-neutral case, which can be shown by
repeating basically the same reasonings as presented in this section.

34



Let

φt(u, v, Y ) := − exp

{
−γξ(Y )−

∫ 1

t
Ĝ(u, v, s, Y )ds−

∫ 1

t
Γ(u, v, s, Y )dYs

}
, (A.10)

We define the CEQ wealth Q and value functions (V,V) as follows:

Qu,vt := −1

γ
ln
(
−Êu,vt [φt(u, v, Y )]

)
, (A.11)

Vt(u, v
∗(u)) = ess inf

v∈D1
t

− exp (−γQu,vt ) , (A.12)

Vt = ess sup
u∈U1

t

Vt(u, v
∗(u)). (A.13)

Let Ho be the Hamiltonian given as follows: for (ut, vt, p, t, Y ) ∈ Ut(Y )×Dt(Y )×R×

[0, 1]× Ω,

Ho(ut, vt, p, t, Y ) := pK(ut, vt, t, Y ) +G(ut, vt, t, Y )− γ

2
(pσ(ut, vt, t, Y ))2 , (A.14)

where

G := g + hf +
[
q − γ

2
h2
]
σ2,

K := f − γhσ2.

Assumption A.3 For each (p, t, Y ), there exists a saddle point (u∗t , v
∗
t ) ∈ Ut(Y )×Dt(Y )

such that, for all ut ∈ Ut(Y ) and vt ∈ Dt(Y ),

Ho(ut, v
∗
t , p, t, Y ) ≤ Ho(u∗t , v

∗
t , p, t, Y ) ≤ Ho(u∗t , vt, p, t, Y ),

and that (u∗, v∗) ∈ U ×D.

We note that the existence of saddle-point value functions in general is a challenging mathe-

matical issue, particularly for diffusion control problems. See for example Pham and Zhang

(2014). In this paper, we just content ourselves with providing closed-form solutions to

some specific cases as in Proposition 2, without looking into general conditions for the

existence.

In the following lemma, we characterize the value function process Vt and thus the

optimal CEQ process Q∗t (≡ Q
u∗,v∗

t ).
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Lemma A.2 Let φ0(u, v, Y ) ∈ L1
P , and also let Assumptions A.1, through A.3 hold. Then,

there exist a unique Po-q.s. square integrable process Z∗t and a saddle point process (u∗, v∗)

such that

(u∗t , v
∗
t ) ∈ arg max

u∈Ut(Y )
min

v∈Dt(Y )
Ho(u, v, Z∗t , t, Y ), (A.15)

dQ∗t = −Ho(u∗t , v
∗
t , Z

∗
t , t, Y )dt+

γ

2
(Z∗t )2 (d〈Yt〉 − (σ∗t )

2dt
)

+ Z∗t dYt, Q∗1 = ξ(Y ), (A.16)

and Vt = − exp (−γQ∗t ) = ess supu∈U1
t

infv∈D1
t

[− exp (−γQu,vt )].

Remark: Under P̃ u
∗,v∗ , dQ∗t = −Ho(u∗t , v

∗
t , Z

∗
t , t, Y )dt+ Z∗t dYt, Q∗1 = ξ(Y ).

Proof: For admissible (u, v) and (u′, v′), let

ϕu,vt (u′, v′) := Êu
′,v′
[
− exp

{
−γξ(Y )−

∫ 1

0
Ĝ(u, v, s, Y )ds−

∫ 1

0
Γ(u, v, s, Y )dYs

} ∣∣∣ F̂t] .
Note that ϕu,vt (u′, v′) is a martingale under P̂ u

′v′ and {ϕu,vt (u′v′) | (u′, v′) ∈ U × D} is a

family of martingales under different measures. Then, there exist a unique Po-q.s. F̂-

progressively measurable aggregating process ϕu,vt and a unique Po-q.s. square integrable

process Ẑu,vt such that under each P̂ u
′,v′(∈ P), ϕu,vt = ϕu,vt (u′, v′), and

ϕu,vt = − exp

{
−γξ(Y )−

∫ 1

0
Ĝ(.)ds−

∫ 1

0
Γ(.)dYs

}
+ γ

∫ 1

t
ϕu,vs Ẑu,vs dYs (A.17)

is a (F̂ , P u′v′)-martingale, where the suppressed arguments are (us, vs, s, Y ). (See Nutz

(2012a) or STZ (2011) for the aggregation.) That is, ϕu,vt is a Po-q.s. martingale with the

following dynamics:

dϕu,vt = −γϕu,vt Ẑu,vt dYt, Po-q.s. (A.18)

On the other hand, let us define a process Qu,vt , Po-q.s. through the following equation:

ϕu,vt = − exp

{
−γQu,vt −

∫ t

0
Ĝ(.)ds−

∫ t

0
Γ(.)dYs

}
.
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(Note that Qu,vt is well defined under all P ∈ P, and that it is the CEQ wealth process

under P u,v.) Then, the Itô formula implies, Po-q.s.,

dϕu,vt = ϕu,vt

{
−γdQu,vt − Ĝ(.)dt− Γ(.)dYt

}
+

1

2
ϕu,vt d

〈
γQu,vt +

∫ t

0
ΓsdYs

〉
. (A.19)

Equating (A.18) and (A.19), we have, Po-q.s.,

γdQu,vt = −Ĝ(.)dt+
γ2

2
(Ẑu,vt )2d 〈Yt〉+

(
γẐu,vt − Γ(.)

)
dYt, Qu,v1 = ξ(Y ).

Let γZu,vt := γẐu,vt − Γ(.). Then

γdQu,vt = −Ĝ(.)dt+
1

2
(γZu,vt + Γ(.))

2
d 〈Yt〉+ γZu,vt dYt, Qu,v1 = ξ(Y ). (A.20)

Now, let v∗(u) be the worst parameter process given u such that

v∗t (u) ∈ arg ess inf
v∈D
− exp (−γQt(u, v)) .

Consider an admissible (concatenated) pair process (us, vs) with the following structure:

for t, τ ∈ [0, 1],

(u, v) =

{
(us, v

∗
s(u)) for τ < s ≤ 1,

(us, vs) for t ≤ s ≤ τ.

Let Q∗τ (u) ≡ Qu,v
∗(u)

τ , and

Ju,vτ := − exp

{
−γQ∗τ (u)−

∫ τ

t
Ĝ(us, vs, .)ds−

∫ τ

t
Γ(us, vs, .)dYs

}
. (A.21)

If τ = t, then Ju,vt = − exp {−γQ∗t (u)} = Vt(u, v
∗(u)). For t ≤ s ≤ τ , the dynamic

programming principle implies that 24

Êu,vs [Ju,vτ ] = exp

{
−
∫ s

t
Ĝw(.)dw −

∫ s

t
ΓwdYw

}
× Êu,vs

[
− exp

{
−γQ∗τ (u)−

∫ τ

s
Ĝw(.)dw −

∫ τ

s
ΓwdYw

}]
≥ Ju,vs .

24For the dynamic programming principle with controlled diffusions, see, for example, Nutz (2012b, The-
orem 5.2), STZ (2012, Proposition 5.14), Bouchard and Nutz (2012, Theorems 4.2 and 4.6), Nutz and Soner
(2012, Theorem 4.10), and Pham and Zhang (2014, Theorem 4.6, Proposition 7.3). For that with controlled
drifts, see, for instance, Rishel (1970), Davis (1973), Davis and Veraiya (1973, Theorem 3.1), and Davis
(1979).
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That is, Ju.vτ is a (F̂ , P̂ u,v)-submartingale on [t, 1]. Then the Doob-Meyer decomposition

implies that there exist a unique square integrable process Mu,v
t and a unique increasing

process Au,vt under P̂ u,v such that

Ju,vτ =

∫ τ

t
Mu,v
s dYs +Au,vτ ,

where Êu,vt [
∫ 1
t (Mu,v

s σu,vs )
2
ds] <∞.

On the other hand, (A.21) implies, Po-q.s.,

dJu,vτ = Ju,vτ

{
−γdQ∗τ (u)− Ĝ(.)dτ − ΓτdYτ

}
+
γ

2
Ju,vτ d

〈
γQ∗τ (u) +

∫ τ

t
ΓsdYs

〉
,

and (A.20) implies that under P u,v
∗(u) a.s., the CEQ process with (u, v∗(u)) evolves as

follows;

γdQ∗t (u) = −Ĝ∗t (u)dt+
1

2
(γZ∗t (u) + Γ∗t (u))2 (σ∗t )

2dt+ γZ∗t (u)dYt. (A.22)

where Ĝ∗t (u), Z∗t (u) and Γ∗t (u) are short for Ĝ(ut, v
∗
t (u), t, Y ), Z

u,v∗(u)
t and Γ(ut, v

∗
t (u), t, Y ),

respectively. Recall that under P̂ u,v
∗(u), d〈Yt〉 = (σ∗t (u))2dt ≡ (σ∗t (u, v

∗(u), t, Y ))2dt. Also,

recall that (u, v) is the concatenated pair satisfying (us, vs) ≡ (us, v
∗
s(u)) for τ < s ≤ 1.

Then, with the superscript (u, v) on Jτ suppressed, under P̂ u,v,

dJτ = Jτ

{
Ĝ∗τ (u)− 1

2
(γZ∗τ (u) + Γ∗τ (u))2 (σ∗τ (u))2 − Ĝ(u, v, .) +

1

2
(γZ∗τ (u) + Γ)2 σ2

τ

}
dτ

− Jτ (γZ∗τ (u) + Γτ ) dYτ

= γJτ {Ho(uτ , v
∗
τ (u), Z∗τ (u), τ, Y )−Ho(uτ , vτ , Z

∗
τ (u), τ, Y )} dτ − Jτ (γZ∗τ (u) + Γτ ) dYτ ,

whereHo(u, v, Z, t, Y ) is as defined in (A.14). However, since Jτ is a (F̂ , P̃ u,v)-submartingale,

the uniqueness of the Doob-Meyer decomposition implies −Jτ (γZ∗τ (u) + Γτ ) = Mu,v
τ on

Ωσ(u,v), and Êu,vt [
∫ 1
t (Js (γZ∗s (u) + Γτ )σs)

2 ds] < ∞. That is, the stochastic integral is a

(F̂ , P̂ u,v)-martingale, and for t, τ ∈ [0, 1],

− exp (−γQu,vt ) = − exp (−γQ∗t (u)) + Êu,vt

[∫ τ

t
γJs∆H

o(us, vs, Z
∗
s (u), s, Y )ds

]
, (A.23)
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where

∆Ho(us, vs, Z
∗
s (u), s, Y ) := Ho(us, v

∗
s(u), Z∗s (u), s, Y )−Ho(us, vs, Z

∗
s (u), s, Y ).

Note that Qu,vt in (A.23) is CEQ at time t when arbitrary admissible (u, v) during period

[t, τ ], and (u, v∗(u)) afterwards are to be chosen. Then, since Js < 0, the application of

the optimality principle to (A.23) yields the following inequality: given each u ∈ U , for all

v ∈ D, and s ∈ [0, 1],

Ho(us, vs, Z
∗
s (u), s, Y ) ≥ Ho(us, v

∗
s(u), Z∗s (u), s, Y ). (A.24)

Next, let u∗ be such that

u∗t ∈ arg ess sup
u
− exp (−γQ∗t (u)) ,

and consider an admissible pair (u, v) with the following structure: for t, τ ∈ [0, 1],

(u, v) =

{
(u∗s, v

∗
s) for τ < s ≤ 1,

(us, v
∗
s(u)) for t ≤ s ≤ τ,

where v∗ denotes v∗(u∗). Let Q∗τ = Q∗τ (u∗), and

Ju,vτ := − exp

{
−γQ∗τ −

∫ τ

t
Ĝ(us, v

∗
s(u), .)ds−

∫ τ

t
Γ(us, v

∗
s(u), .)dYs

}
.

Then by using a similar argument to the previous case, one can show that Ju,vτ is a (F̂ , P̂ u,v)-

supermartingale on [t, 1], and that u∗ satisfies, for all u ∈ U and s ∈ [0, 1],

Ho(us, v
∗
s(u), Z∗s , s, Y ) ≤ Ho(u∗s, v

∗
s , Z

∗
s , s, Y ), (A.25)

where Z∗s ≡ Z∗s (u∗). The inequalities (A.24) and (A.25) imply that the optima pair (u∗, v∗)

at each s ∈ [0, 1], satisfies the following inequalities: for all (u, v) ∈ U × D, i.e., Po-q.s.,

Ho(us, v
∗
s(u), Z∗s , s, Y ) ≤ Ho(u∗s, v

∗
s , Z

∗
s , s, Y ) ≤ Ho(u∗s, vs, Z

∗
s , s, Y ).

In other words, (u∗s, v
∗
s) is a saddle point of Ho, confirming (A.15). Then (A.22) directly

implies (A.16). 2
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The following corollary turns out to be convenient to ravel out the principal’s problem

when the decision environment is stationary as in Holmstrom and Milgrom (1987).

Corollary A.1 Suppose that ξ(Y ) = k, where k is a constant, and that Dt, G(.), f , and σ

are all state-independent such that π(v, t), G(u, v, t), f(u, v, t), and σ(u, v, t). Also suppose

that G is a saddle function with respect to maximizing in u and minimizing in v. Let

(ûs, v̂s) ∈ arg maxu∈U minv∈DG(u, v, s) for s ∈ [0, 1]. Then, (ûs, v̂s) = (u∗s, v
∗
s), Z

∗
t ≡ 0,

t ∈ [0, 1], and Ho(u∗t , v
∗
t , Z

∗, t, Y ) = G(u∗t , v
∗
t , t, ).

Proof: Let

−e−γQu,v = Êu,vt

[
− exp

{
−γ
(
k +

∫ 1

t
Ĝ(us, vs, s)ds+

∫ 1

t
Γ(us, vs, s)dYs

)}]
.

Then, we have

−e−γQu,v = Ẽu,v
[
− exp

{
−γ
(
k +

∫ 1

t

(
Ĝ(us, vs, s)−

γ

2
Γ2(us, vs, s)σ

2(us, vs, s)
)
ds

)}]
= Ẽu,v

[
− exp

{
−γ
(
k +

∫ 1

t
G(us, vs, s)ds

)}]
,

where

dP̂ u,v

dP̃ u,v
= exp

(
−γ
∫ 1

t
Γ(us, vs, s)dYs −

γ2

2

∫ 1

t
Γ2(us, vs, s)σ

2(us, vs, )ds

)
.

Since (û, v̂) is a pair of state-independent processes, we have

−e−γQû,v̂ = − exp

{
−γ
(
k +

∫ 1

t
G(ûs, v̂s, s)ds

)}
,

which implies Qû,v̂ is deterministic. Moreover, since G is a saddle function, given each

(t, Y ), for all (u, v), a.s.,

−e−γQû,v ≥ Ẽû,vt
[
− exp

{
−γ
(
k +

∫ 1

t
G(ûs, v̂s, s)ds

)}]
= −e−γQû,v̂ = Ẽu,v̂t

[
− exp

{
−γ
(
k +

∫ 1

t
G(ûs, v̂s, s)ds

)}]
≥ −e−γQu,v̂ .

Thus for all (t, Y ) and (u, v), (û, v̂) is optimal and −e−γQû,v̂ is the value function, Vt, i.e.,

(û, v̂) = (u∗, v∗). Since Vt is deterministic, Zu
∗,v∗

t ≡ 0, t ∈ [0, 1], and by (A.15), G = Ho. 2
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A.3 Proof of Theorem 1

Given an admissible contract S ∈ Ψ, suppose that agent arbitrary chooses (e, µ, ν). Then,

the agent’s expected utility is

Eu,v
[
− exp

{
−γA

(
S(Y )−

∫ 1

0
c(et, t, Y )ds

)}]
s.t. dYt = f(et, µt, ν, t, Y )dt+ σ(νt, t, Y )dBe,v

t .

This quantity can be equivalently rewritten as follows:

Êe,v
[
− exp

{
−γA

(
S(Y )−

∫ 1

0

(
c(et, t, Y )− 1

2γA

f2

σ2

)
dt− 1

γA

∫ 1

0

f

σ2
dYt

)}]
s.t. dYt = σ(νt, t, Y )dWt,

where Wt is a Po-universal standard BM, and dP̂ e,v

dP e,v = exp
(

1
2

∫ 1
0
f2

σ2dt−
∫ 1

0
f
σ2dYt

)
. Let

ϕe
′,v′;e,v
t := Êe

′,v′

t

[
− exp

{
−γA

(
S(Y )−

∫ 1

0

(
c(et, t, Y )− 1

2γA

f2

σ2

)
dt− 1

γA

∫ 1

0

f

σ2
dYt

)}]
.

Then ϕe,vt (e′, v′) is a P̂ e
′,v′-martingale, and thus there exists a unique Ẑe

′,v′;e,v. Moreover

{ϕe,vt (e′, v′) | (e′, v′) ∈ U×D} is a family of martingales under different probability measures.

Then, by Nutz (2012) (or STZ (2011)), there exist unique Po-q.s. F̂t-progressively mea-

surable and aggregating, process ϕe,vt and square integrable process Ẑe,vt such that under

P̂ e
′,v′ ∈ P, ϕe,vt = ϕe,vt (e′, v′), and Ẑe,v,t = Ẑe,v:e′,v′

t , a.s.. In particular, Po-q.s.,

ϕe,vt = − exp

{
−γA

(
S(Y )−

∫ 1

0

(
c(es, s, Y )− 1

2γA

f2

σ2

)
ds− 1

γA

∫ 1

0

f

σ2
dYs

)}
+ γA

∫ 1

t
ϕe,vs Ẑe,vs dYs.

Hence, we have

dϕe,vt = −γAϕe,vt Ẑe,vt dYt, (A.26)

which is the same as Eq.(A.18), the general case.
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On the other hand, given ϕe,vt , Po-q.s., we define a process Qe,vt , Po-q.s. through the

following equation:

ϕe,vt ≡ − exp

{
−γA

(
Qe,vt −

∫ t

0

(
c(e, s, Y )− 1

2γA

f2

σ2

)
ds− 1

γA

∫ t

0

f

σ2
dYs

)}
.

(Note that Qe,v1 ≡ S(Y ), Po-q.s., and that, under P e,v, Qe,vt is the CEQ of the agent’s

remaining expected utility at t.) Then, by the Itô formula, Po-q.s.,

dϕe,vt = ϕe,vt

{
−γAdQe,vt + γA

(
c(e, t, Y )− 1

2γA

f2

σ2

)
dt+

f

σ2
dYt

}
+

1

2
ϕe,vd

〈
γAQ

e,v
t −

∫ t

0

f

σ2
dYs

〉
.

This equation, together with Eq.(A.26) implies that the CEQ process dynamics are given

by, Po-q.s.,

dQe,vt =

(
c(e, t, Y )− 1

2γA

f2

σ2

)
dt+

(
1

γA

f

σ2
+ Ẑe,vt

)
dYt +

γA
2

(
Ẑe,vt

)2
〈dYt〉 .

Since Qu,v1 ≡ S(Y ), Po-q.s.,

S(Y ) =WS,u,v
0 +

∫ 1

0

(
c(e, t, Y )− 1

2γA

f2

σ2

)
dt+

∫ 1

0

(
1

γA

f

σ2
+ Ẑe,vt

)
dYt

+
γA
2

∫ 1

0

(
Ẑe,vt

)2
d 〈Yt〉 .

Then, by letting

βt :=
1

γA

f

σ2
+ Ẑe,vt , θt :=

γA
2

(
Ẑe,vt

)2
,

we have (8). 2

A.4 Proof of Theorem 2

By Theorem 1, it is without loss of generality for the principal to consider only the subclass

Ψ̄ defined in (9) where each S ∈ Ψ̄ is given in the following form: Po-q.s.,

S =W0 +

∫ 1

0

{
c(et, t, Y )− βtf(et, µt, νt, t, Y ) +

[γA
2
β2
t − θt

]
σ2(νt, t, Y )

}
dt

+

∫ 1

0
θtd〈Yt〉+

∫ 1

0
βtdYt.
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Recall that even in the first best, the agent is allowed to choose privately his worst prior.

Thus, there can arise the implementability issue about his worst prior choice. (We discuss

this issue in Section 5.1.) Theorem 3 implies that given effort process et, each implementable

contract S ∈ Ψ̄ has to satisfy the following condition for the agent’s choice of the worst

prior:

(µAt , ν
A
t ) ∈ arg min

(µ,ν)∈D
ϕA(et;µ, ν;βt, θt; t, Y ) = βtf +

(
θt −

γA
2
β2
t

)
σ2. (A.27)

Thus, the principal’s problem can be rewritten as

sup
e,θ,β

inf
(µP ,νP )∈D

Ee,v [− exp {−γP (Y1 − S)}] ,

where v = (µP , νP ) and, Po-q.s.,

Y1 − S = Y0 −W0 +

∫ 1

0

(
θt(σ

A
t )2 + βtf

A
t − c(et, t, Y )− γA

2
β2
t (σAt )2

)
dt

−
∫ 1

0
θtd〈Yt〉+

∫ 1

0
(1− βt) dYt,

where fAt = f(et, µ
A
t , ν

A
t , , t, Y ), and σAt = σ(νAt , t, Y ), with (µA, νA) being subject to

(A.27). Then, by Lemma A.2, there exists a unique Po-q.s. square integrable process Z0P
t

such that the principal’s optimal solution (et, θt, βt, µ
P
t , ν

P
t , µ

A
t , ν

A
t ) results from optimizing

the following Hamiltonian:

max
ē,β̄,θ̄

min
(µ̄,ν̄)∈D

HP
t = Z0P

t (f − γP (1− β̄)σ̄2
t ) + (1− β̄)f − c(ē, t, Y )

−
[
θ̄ +

γP
2

(
1− β̄

)2]
σ̄2
t −

γP
2

(Z0P
t )2σ̄2

t + min
(µ̂,ν̂)∈D

ϕA(µ̂, ν̂; ē, β̄, θ̄; t, Y ).

From this, note that given (ē, β̄, θ̄), the principal’s worst parameter pair (µPt , ν
P
t ) is deter-

mined independently of the agent’s. Thus, her problem can be rewritten as

max
ē,β̄,θ̄

ĤP
t = −c(ē, t, Y ) + min

(µ̂P ,ν̂P )∈D
ϕP (µ̂P , ν̂P ; ē, β̄, θ̄; t, Y, Z0P

t )

+ min
(µ̂A,ν̂A)∈D

ϕA(µ̂A, ν̂A; ē, β̄, θ̄; t, Y ).
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where ϕP is defined in (6). Since both ϕA and ϕP are continuously differentiable and

since Dt(Y ) satisfies the KKT constraint qualification conditions, the FOCs with respect

to (µ, ν) become necessary conditions for the principal’s and agent’s minimization problems,

and thus one can apply the Envelope Theorem to obtain FOCs with respect to (e, b, β) as

follows.

(1− βt + Z0P
t )

∂fPt
∂e

+ βt
∂fAt
∂e
− ce = 0, (A.28)

(fAt − fPt )− γAβt(σAt )2 + γP (1− βt + Z0P
t )(σPt )2 = 0, (A.29)

(σAt )2 − (σPt )2 = 0, (A.30)

where fAt = f(et, µ
A
t , ν

A
t , t, Y ) and fPt = f(et, µ

P
t , ν

P
t , t, Y ). By FOC (A.30), σAt = σPt = σct

at optimum, where σAt = σ(νAt (βt, θt), t, Y ) ≡ σA(βt, θt, t, Y ) and σPt = σ(νPt (βt, θt), t, Y ) ≡

σP (βt, θt, t, Y ). Since σ is increasing in ν by assumption, we have νAt (βt, θt) = νPt (βt, θt) =

νct , i.e., volatility perceptions are symmetrized across the two contracting parties, under

their own worst priors.

With volatility perceptions symmetrized at νct , the principal’s decisions on (b, β) are

affected by γA, γP , and potential perceptional difference (fAt −fPt ) between the two parties.

In order to understand the difference, given νct , note that the principal and agent choose

their perceptions (µPt , ν
c
t ) and (µAt , ν

c
t ), respectively as follows:

(µPt , ν
c
t ) ∈ arg min

(µ,ν)∈D
ϕP (µ, ν; et, βt, θt, t, Y, Z

0P
t ),

(µAt , ν
c
t ) ∈ arg min

(µ,ν)∈D
ϕA(µ, ν; et, βt, θt, t, Y ).

That is, given (βt, θt) and the state variable Z0P
t ,

µPt ∈ arg min
µ∈D(νct )

(1− βt + Z0P
t )f(e, µ, νct , t, Y ),

µAt ∈ arg min
µ∈D(νct )

βtf(e, µ, νct , t, Y ),

where D(νct ) := {µ ∈ R |π(µ, νct , t, Y ) ≥ 0}. Let fAt = f(et, µ
A
t , ν

c
t , , t, Y ) and fPt =

f(et, µ
P
t , ν

c
t , , t, Y ). Then, since fµ > 0, one can see that if 1 − βt + Z0P

t > 0, then µPt =
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minD(νct ) µ(νct ), and if 1 − βt + Z0P
t < 0, then µPt = maxD(νct ) µ(νct ); and if βt > 0, then

µAt = minD(νct ) µ(νct ), and if βt < 0, then µAt = maxD(νct ) µ(νct ).

Since γA, γP ≥ 0 and they are not simultaneously zero, we must have 0 ≤ βt ≤ 1 +Z0P
t ,

because of the following reasons.

• If βt < 0 and 1 + Z0P
t < βt, condition (A.28) is contradicted.

• If βt < 0 and 1 + Z0P
t > βt, then µPt = minµ(νct ). Thus fAt − fPt ≥ 0 contradicting

FOC (A.29), because γA and γP are not simultaneously zero.

• If βt > 0 and 1 + Z0P
t < βt, then µAt = minµ(νct ). Thus fAt − fPt ≤ 0 contradicting

FOC (A.29), again because γA and γP are not simultaneously zero.

• If 0 < βt < 1 + Z0P
t , then µAt = µPt = minµ(νc).

• If β = 0, then by (A.28), (1 + Z0P
t )fPe = ce and thus (1 + Z0P

t ) > 0, and µPt =

minµ(νc), which implies fA − fP ≥ 0, contradicting FOC (A.29), if γP > 0. Thus,

in this case, we must have γP = 0, γA > 0, and fAt = fPt , or µAt = µPt = minµ(νc).

• If β = 1+Z0P
t , then β > 0 by (A.28), and µAt = minµ(νc), which implies fA−fP ≤ 0,

contradicting FOC (A.29), if γA > 0. Thus, in this case, we must have γA = 0, γP > 0,

and fAt = fPt , or µAt = µPt = minµ(νc).

Therefore, 0 ≤ β ≤ 1 + Z0P
t and the worst priors are symmetrized with µAt = µPt =

minµ(νc). Moreover, under the symmetrized prior, since γA + γP > 0 and fe > 0, the

FOCs imply

1 + Z0P
t =

ce
fe
> 0, βt =

γP
(γA + γP )

ce
fe
> 0. (A.31)

These equations imply that if γA, γP > 0, then 1− βt + Z0P
t > 0 at optimum.
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Let (µAt , ν
A
t ) and (µPt , ν

P
t ) be symmetrized at (µct , ν

c
t ). That is,

(µAt , ν
A
t ) ∈ arg min

(µ,ν)∈D
ϕA, and

(µPt , ν
P
t ) ∈ arg min

(µ,ν)∈D
ϕP .

Also let

BPt :=
γP
2

(1− βt + Z0P
t )2 + θt, (A.32)

BAt :=
γA
2
β2
t − θt. (A.33)

Then, the FOCs for these two problems with respect to (µ, ν) are as follows: there are

Largrange multipliers λPt, λAt ≥ 0 such that

− (1− βt + Z0P
t )fµ + λPtπµ = 0, (A.34)

− (1− βt + Z0P
t )fν + 2BPtσt

∂σt
∂ν

+ λPtπν = 0, (A.35)

λPtπ = 0, π ≥ 0, (A.36)

− βtfµ + λAtπµ = 0, (A.37)

− βtfν + 2BAtσt
∂σt
∂ν

+ λAtπν = 0, (A.38)

λAtπ = 0, π ≥ 0. (A.39)

Above FOCs imply πµ 6= 0, at optimum. To see this, suppose πµ = 0. Then by (A.34),

βt = 1 + Z0P
t . However, (A.37) implies βt = 0, contradicting (A.31).

Since πµ 6= 0, FOCs (A.34) and (A.37) imply (1−βt+Z0P
t )λAt = βtλPt. Together with

this relationship, (A.35) and (A.38) imply

βtBPtσt
∂σt
∂ν
− (1− βt + Z0P

t )BAtσt
∂σt
∂ν

= 0.

Then, since σt
∂σt
∂ν > 0 by assumption, we have βtBPt = (1 − βt + Z0P

t )BAt, which in turn

implies

θt =
β(1− β + Z0P

t )

2(1 + Z0P
t )

(
γAβt − γP (1− βt + Z0P

t )
)

= 0.
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The last equality holds because of (A.31). Given θt = 0, and βt satisfying (A.31), the com-

mon worst prior minimizes both ϕA and ϕP as it solves (10), and the optimal compensation

scheme S is given as stated in the theorem. 2

A.5 Proof of Theorem 3

Let us rewrite the agent’s expected remaining utility as follows.

ess sup
e∈U1

t

inf
(µ,ν)∈D1

t

Ee,vt

[
− exp

{
−γA

(∫ 1

t

{
−c(es, s, Y )−HA(e∗s, µ

∗
s, ν
∗
s ;βs, θs, s, Y )

}
ds

+

∫ 1

t

[
θs −

γA
2
β2
s

]
σ2ds+

∫ 1

t
βsfds

)}
dP̃ e,vt
dP e,vt

]
,

where

dP̃ e,vt
dP e,vt

= exp

{
−γA

∫ 1

t
βs (dYs − fds)−

γ2
A

2

∫ 1

t
β2
sσ

2(νs, s, Y )ds

}
.

Hence, we have

ess sup
e∈U1

t

inf
(µ,ν)∈D1

t

Ẽe,vt

[
− exp

{
−γA

(∫ 1

t

{
HA(es, µs, νs; .)−HA(e∗s, µ

∗
s, ν
∗
s ; .)

}
ds

)}]
.

(A.40)

The ‘if ’ part. Suppose (e∗, µ∗, ν∗) is a saddle point of HA: given (βs, θs, s, Y ), for all

(es, (µs, νs)) ∈ U ×Ds(Y ),

HA(es, µ
∗
s, ν
∗
s ; .) ≤ HA(e∗s, µ

∗
s, ν
∗
s ; .) ≤ HA(e∗s, µs, νs; .).

Let us define G̃(es, µs, νs; e
∗
s, µ
∗
s, ν
∗
s ; .) ≡ HA(es, µs, νs; .)−HA(e∗s, µ

∗
s, ν
∗
s ; .). Then, (e∗s, µ

∗
s, ν
∗
s )

is also a saddle point of G̃ given (βs, θs, s, Y ), and the agent’s remaining utility for all (s, Y )

satisfies

− exp

{
−γA

∫ 1

t
G̃(es, µ

∗
s, ν
∗
s ; .)ds

}
≤ − exp

{
−γA

∫ 1

t
G̃(e∗s, µ

∗
s, ν
∗
s ; .)ds

}
= −1

≤ − exp

{
−γA

∫ 1

t
G̃(e∗s, µs, νs; .)ds

}
. (A.41)
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The first inequality of (A.41) implies

Ee,v
∗

t

[
− exp

{
−γA

∫ 1

t
G̃(es, µ

∗
s, ν
∗
s ; .)ds

}
dP̃ e,v

∗

t

dP e,v
∗

t

]

≤ Ee,v
∗

t

[
− exp

{
−γA

∫ 1

t
G̃(e∗s, µ

∗
s, ν
∗
s ; .)ds

}
dP̃ e,v

∗

t

dP e,v
∗

t

]
= −1

= Ee
∗,v∗

t

[
− exp

{
−γA

∫ 1

t
G̃(e∗s, µ

∗
s, ν
∗
s ; .)ds

}
dP̃ e

∗,v∗

t

dP e
∗,v∗

t

]
.

For both the above inequality and equality, we have utilized the following facts:

G̃(e∗t , µ
∗
t , ν
∗
t ; .) = 0, and Ee,vt

[
dP̃ e,vt
dP e,vt

]
= 1, ∀(t, e, v).

Similarly, by the second inequality of (A.41), we have

Ee
∗,v∗

t

[
− exp

{
−γA

∫ 1

t
G̃(e∗s, µ

∗
s, ν
∗
s ; .)ds

}
dP̃ e

∗,v∗

t

dP e
∗,v∗

t

]
= −1

= Ee
∗,v
t

[
− exp

{
−γA

∫ 1

t
G̃(e∗s, µ

∗
s, ν
∗
s ; .)ds

}
dP̃ e

∗,v
t

dP e
∗,v
t

]

≤ Ee
∗,v
t

[
− exp

{
−γA

∫ 1

t
G̃(e∗s, µs, νs; .)ds

}
dP̃ e

∗,v
t

dP e
∗,v
t

]
.

Note that the first equality holds even when P e
∗,v∗

t and P e
∗,v
t are mutually singular, because

G̃ ≡ 0 at (e∗, µ∗, ν∗). Hence, by the principle of optimality, (e∗, µ∗, ν∗) is an optimal re-

sponse by the agent, and his value function Vt(≡ V e∗,v∗

t ), or the optimal expected remaining

utility, is constant over time at − exp (−γAW0).

The ‘only if ’ part. Suppose that agent is given a contract S ∈ Ψ̄ with (e∗, µ∗, ν∗),

and the agent in fact, chooses (e∗, µ∗, ν∗). Then it must be true that (e∗, µ∗, ν∗) is a saddle

point of HA. To see this, we apply Lemma A.2. Let u ≡ e, v ≡ (µ, ν), ξ(Y ) = W0,

gt = c(ēt, t, Y )−βf(ēt, µ̄t, ν̄t, t, Y ) +
(γA

2 β
2
t − θt

)
σ2
t (ν̄t, t, Y )− c(ê, t, Y ), qt = θt, and h = β.

Also let

G = c̄− βf̄ +
(γA

2
β2
t − θt

)
σ̄2
t − c(ê, t, Y ) + βtf(ê, µ̂t, ν̂t, t, Y ) +

(
q − γA

2
β2
)
σ2(ν̂t, t, Y ),

K = f(ê, µ̂t, ν̂t, t, Y )− γAβtσ2(ν̂t, t, Y ).
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Since the contract S induces the agent to optimally choose (e∗t , µ
∗
t , ν
∗
t ), the Lemma implies

that there exists a P-q.s. square-integrable process Zu,vt such that

(e∗t , µ
∗
t , ν
∗
t ) ∈ arg max

ê∈U
min

(µ̂,ν̂)∈Dt(Y )
HA(ê, µ̂, ν̂, Zu,vt , t, Y ), (A.42)

where for each (Zu,vt , t, Y ),

HA(ê, µ̂, ν̂, Zt, t, Y ) = Zu,vt Kt +G− γA
2

(Zu,vt )2σ2(ν̂, t, Y )

= (βt + Zu,vt ) f(ê, µ̂t, ν̂t, t, Y ) +
(
qt −

γA
2

(βt + Zu,vt )
2
)
σ2(ν̂, t, Y )

+ c∗ − βf∗ +
(γA

2
β2
t − qt

)
(σ∗t )

2 − c(ê, t, Y ).

Lemma A.2 indicates that this condition is necessary and sufficient for the optimality of

(e∗t , µ
∗
t , ν
∗
t ). However, (A.40) implies the agent’s utility is constant over time. That is

Zu,vt ≡ 0. Then this Hamiltonian coincides with the one stated in the Proposition. 2

A.6 Proof of Proposition 1

Consider a non-saddle point process (e, (µ, ν)) ∈ U × D and a contract S(e, µ, ν;β, θ) ∈ Ψ̄.

Suppose that the agent accepts this contract, and optimally chooses (e∗, µ∗, ν∗) with his

initial CEQ wealth equal toW∗0 . Then, by Theorem 3, (e∗, µ∗, ν∗) is a saddle point process.

Without loss of generality, we can assume that W∗0 ≥ W0, because otherwise, the agent

rejects the contract. Then, by Theorem 1, there exists a pair of unique Po-q.s. square-

integrable processes (β′, θ′) such that the contract S(e, µ, ν;β, θ) can be represented Po-q.s.

in distribution by contract S(e∗, µ∗, ν∗;β′, θ′) − W0 +W∗0 , where S(e∗, µ∗, ν∗;β′, θ′) ∈ Ψ̄.

That is, given S(e∗, µ∗, ν∗;β′, θ′) − W0 + W∗0 , the agent chooses the same saddle point

process (e∗, µ∗, ν∗), with his initial CEQ wealth equal to W∗0 . However, the no-wealth

effect with exponential utility implies that the agent would also choose the same sad-

dle point process (e∗, µ∗, ν∗;β′, θ′), with his initial CEQ wealth equal to W0, even if

he were given S(e∗, µ∗, ν∗;β′, θ′). That is, S(e∗, µ∗, ν∗;β′, θ′) is implementable. On the

other hand, the principal is indifferent between the two contracts, S(e, µ, ν;β, θ) and
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S(e∗, µ∗, ν∗;β′, θ′)−W0 +W∗0 , because they are identically distributed. Hence, she (weakly)

prefers S(e∗, µ∗, ν∗;β′, θ′) to either of the two contracts, wheneverW∗0 ≥ W0, and the state-

ment follows. 2

A.7 Proof of Theorem 4

The principal’s problem is to choose (e, µA, νA), θ, and (µP , νP ) in order to optimize her

expected utility as follows:

sup
e

inf
vP
Ee,v

P
[− exp {−γP (Y1 − S)}]

s.t. (i) dYt = f(et, µ
P
t , ν

P
t , t, Y )dt+ σ(νPt , t, Y )dBu,vP

t ,

(ii) (et, µ
A
t , ν

A
t ) ∈ arg max

ê
min

(µ̂,ν̂)∈D
βtf(ê, µ̂, ν̂, t, Y )− c(ê, t, Y ) +

[
θt −

γA
2
β2
t

]
σ2(ν̂, t, Y ),

(iii)βt =
ce(et, t, Y )

fe(et, µAt , ν
A
t , t, Y )

,

where vP = (µP , νP ), and

Y1 − S = −W0 −
∫ 1

0

{
c(et, t, Y )− βtf(et, µ

A
t , ν

A
t , t, Y ) +

[γA
2
β2
t − θt

]
σ2(νAt , t, Y )

}
dt

−
∫ 1

0
θtd〈Yt〉+

∫ 1

0
(1− βt)dYt

= −W0 +

∫ 1

0
HA(e, µAt , ν

A
t ;βt, θt, t, Y )dt−

∫ 1

0
θtd〈Yt〉+

∫ 1

0
(1− βt)dYt.

The constraint (ii) is for incentive compatibility. Given that βt satisfies (iii) where c is

convex and f is concave in e, the agent’s FOC with respect to ê implies that given a

contract with β(e, .), the agent always chooses ê = e. Thus, given β as in (iii), the incentive

compatibility for e is always satisfied, and therefore (ii) can be simplified as follows.

(µAt , ν
A
t ) ∈ arg min

(µ̂,ν̂)∈D
ϕA(e, µ̂, ν̂; θt, βt, t, Y ).

Then, by Lemma A.2, there exists a unique Po-q.s. square integrable process ZPt such that

the principal optimizes the following Hamiltonian HP
t :

HP = ZPt
(
f − γP (1− βt)(σPt )2

)
+Gt −

γP
2

(ZPt )2σ2.
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This Hamiltonian can be rearranged as stated in (13). The constraints (14) and (15) are,

respectively, for incentive compatibility for the agent’s effort and worst prior choices. 2

A.8 Proof of Theorem 5

Since both ϕA and ϕP are continuously differentiable and since D satisfies the KKT con-

straint qualification conditions, FOCs of the principal’s and agent’s minimization problems

with respect to (µ, ν) become necessary conditions, and thus one can apply the Envelope

Theorem to the principal’s problem (13) for the following FOCs with respect to e and b:

− ce(et, t, Y ) +
∂ϕA
∂e

+
∂ϕP
∂e

= 0, (A.43)

(σAt )2 − (σPt )2 = 0, (A.44)

where σkt ≡ σ(νkt , t, Y ), k = A,P . Note that given σAt = σPt , FOC (A.43), together with

β = ce/f
A
e , implies

βe(f
A − fP ) + (fPe + γPβeσ

2)(1 + ZPt ) = β
(
fPe + (γP + γA)βeσ

2
)
, (A.45)

where the subscript e denotes the partial derivative of the corresponding function with

respect to e, and fk is short for f(et, µ
k
t , ν

k
t , t, Y ), k = A,P .

We claim that at optimum, the worst priors of the two contracting parties are sym-

metrized, and 0 < β ≤ 1 + ZPt , where the equality holds only when γA = 0. Since f is

concave, βe > 0. Since ce and fe are strictly positive, we have β = ce/fe > 0, trivially.

FOC (A.44) implies νAt = νPt = νct . Let (µPt , ν
c
t ) and (µAt , ν

c
t ) be the optimal perceptions

chosen by the principal and agent, respectively. Then, for all (µ, ν) ∈ D,

βtf(µAt , ν
c
t , t, Y )−BAt(σct )2 ≤ βf(µ, ν, t, Y )−BAtσ2 and

(1− β + ZPt )f(µPt , ν
c
t , t, Y )−BPt(σct )2 ≤ (1− β + ZPt )f(µ, ν, t, Y )−BPtσ2.

where BPt and BAt are as defined in (A.32) and (A.33), respectively. At ν = νct , σ = σct ,
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and for all µ,

βt(f(µAt , ν
c
t , t, Y )− f(µ, νct , t, Y )) ≤ 0, (A.46)

(1− β + ZPt )(f(µPt , ν
c
t , t, Y )− f(µ, νct , t, Y )) ≤ 0. (A.47)

If β > 1 + ZPt , then by the two inequalities, f(µAt , ν
c
t , t, Y )− f(µPt , ν

c
t , t, Y ) ≤ 0. However,

Eq.(A.45) implies

βe(f
A − fP ) + (fPe + γPβeσ

2)β > β
(
fPe + (γP + γA)βeσ

2
)
,

Since β, βe > 0,

βe(f
A − fP ) > γAββe(σ

c
t )

2 ≥ 0.

Thus, fA − fP > 0, contradiction. That is, we must have 0 < β ≤ 1 + ZPt .

Thus, if β < 1 + ZPt , then the two inequalities (A.46) and (A.47) imply that for all µ,

f(µAt , ν
c
t , t, Y ) ≤ f(µ, νct , t, Y ), and f(µPt , ν

c
t , t, Y ) ≤ f(µ, νct , t, Y ). That is, f(µAt , ν

c
t , t, Y ) =

f(µPt , ν
c
t , t, Y ) = minµ f(µ, νct , t, Y ), i.e., µAt = µPt . Hence the worst priors are symmetrized.

If βt = 1 + ZPt , then we always have f(µAt , ν
c
t , t, Y ) = minµ f(µ, νct , t, Y ), and thus

fA − fP ≤ 0. However, Eq.(A.45) implies

βe(f
A − fP ) + (fPe + γPβeσ

2)β = β
(
fPe + (γP + γA)βeσ

2
)
.

Thus, we have βe(f
A − fP ) = βγAβeσ

2. If γA > 0, fA − fP > 0, contradiction. Therefore,

if β = 1 + ZPt , then γA = 0, but then by the same FOC, fA = fP . That is, the worst

priors are symmetrized. That is, in all cases with 0 < β ≤ 1 + ZPt , the worst priors are

symmetrized. Then under the symmetrized worst prior, FOC (A.45) yields (16) which holds

for both cases, γA > 0 and γA = 0.

Now, let (µAt , ν
A
t ) and (µPt , ν

P
t ) be symmetrized at (µct , ν

c
t ). That is,

(µct , ν
c
t ) ∈ arg min

(µ,ν)∈D
ϕA, and

(µct , ν
c
t ) ∈ arg min

(µ,ν)∈D
ϕP .
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Then, using the same reasoning as in the last part of the proof of Theorem 2, one can show

that θt is given by Eq.(17). 2

A.9 Proof of Proposition 2

Equipped with the Itô formula in the presence of singular measures, and with the saddle-

point assumption (called the Issacs condition), one can derive the following Hamilton-

Jacobi-Bellman-Issacs (HJBI) equation: Po-q.s.,

0 ≡ ∂V

∂t
+ sup

e,θ
inf

µP ,νP

[
−γP

∂V

∂y

{
(1− κet)(νPt )2 − 1

γP
(ηYt + et + µPt )

}
+

1

2

∂2V

∂y2
(νPt )2

+γPV

{
θt(ν

P
t )2 − 1

2γP

(ηYt + et + µPt )2

(νPt )2
+
κ

2
e2
t − κet(ηYt + et)− κetµAt

+
(γA

2
κ2e2

t − θt
)

(νAt )2 +
γP
2

(
1− κet −

1

γP

ηYt + et + µPt
(νPt )2

)2

(νPt )2

}]
,

with V (1, Y1) = Y0 − W0. Also suppose that Eu,v
[∫ 1

0

(
∂
∂yV (t, Y )

)2
ν2
t dt

]
< ∞ for all

P u,v ∈ Po. Then, the well-known verification theorem still holds: that is, if there is a

function V satisfying the HJBI with the square integrability condition, then V is the value

function, i.e., V ≡ V, and the optimand in the HJBI is the principal’s Hamiltonain, HP .

Let us consider a function V (t, y) = − exp {−γP (ζ(t)y + ρ(t))} with ζ(1) = 0 and

ρ(1) = Y0 −W0. Then, V (1, y) = − exp(−γP (Y0 −W0)),

∂V

∂t
= −γP (yζ̇ + ρ̇)V,

∂V

∂y
= −γP ζ(t)V, and

∂2V

∂y2
= γ2

P ζ
2(t)V.

Set ζ̇ = −(1 + ζ(t))η. Since ζ(1) = 0, we have ζ(t) = eη(1−t) − 1. Suppose the function V

satisfies the HJBI. Then, Vt = Vt, and Qt = ζ(t)Yt + ρ(t) which in turn implies ζ(t) = ZPt

by (A.16). Moreover, from the HJBI,

0 ≡ ρ̇+ sup
e,θ

inf
µP ,νP

[
− (ζ(t) + 1− κet)2 γP

2
(νPt )2 −

(γA
2
κ2e2

t − θt
)

(νAt )2

−θt(νPt )2 +
κ

2
e2
t + κetµ

A
t + (1− κet + ζ(t))(et + µPt )

]
.
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For some λAt , λ
P
t ≥ 0, the FOCs are

κ(µAt − µPt ) +
(
κγP (νPt )2 + 1

)
(1 + ζ(t))

= κet
(
1 + κ(γP (νPt )2 + γA(νAt )2)

)
, (A.48)

(νAt )2 − (νPt )2 = 0, (A.49)

(1− κet + ζ(t))− λPt πµP = 0, (A.50)

− (ζ(t) + 1− κet)2 γP ν
P
t − 2θtν

P
t − λPt πνP = 0, (A.51)

κet − λAt πµA = 0, (A.52)

−2
(γA

2
κ2e2

t − θt
)
νAt − λAt πνA = 0, (A.53)

λPt π(µPt , ν
P
t ) = 0, π(µPt , ν

P
t ) ≥ 0, (A.54)

λAt π(µAt , ν
A
t ) = 0, π(µAt , ν

A
t ) ≥ 0. (A.55)

By using the same procedure as in the proof of Theorem 5, one can show that µPt = µAt = µct ,

νPt = νAt = νct , and

θt =
1

2(1 + ζ(t))
βt(1− βt + ζ(t)) [γAβt − (1− βt + ζ(t)) γP ] . (A.56)

In fact, this equation also follows from FOCs (A.49) to (A.53). Then from (A.48), we have

(24). Moreover, since πµ = 1 and πν = −α(νct − ν0), FOCs (A.52) and (A.53) imply

(
γAβ

2
t − 2θt

)
νct = αβt(ν

c
t − ν0).

This equation, together with (A.56) and (24), implies that νct − ν0 ≥ 0, and Υ(νct ) = 0.

Note that Υν

Υν = −4
γAκν

c
t

R3
t

γA(1 + ζ(t))

α
− ν0

(νct )
2
.

Thus, Υν < 0. Υ(0) =∞. Note that Υ(∞) < 0 if γAγP
γA+γP

eη(1−t)

α −1 < 0 for all t. Then there

is a unique interior solution for νct for all t. Since the volatility ambiguity interval is [ν, ν]
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where Υ(ν) > 0 and Υ(ν) < 0, there exists a unique optimal νct in the interior of [ν, ν].

Consequently, the common worst prior (µc, νc) can depend only on time, but not on state.

On the other hand, the HJBI yields

ρ̇ = eη(1−t)
(
eη(1−t) − 2βt

) γP
2

(νct )
2 − eη(1−t)(

βt
κ

+
α

2
(νct − ν0)2) +

β2
t

2κ

[
1 + (γA + γP )κ(νct )

2
]

= −
[
eη(1−t)α

2
(νct − ν0)2 + e2η(1−t) 1 + κγP (νct )

2 − κ2γAγP (νct )
4

2κ (1 + κ(γP + γA)(νct )
2)

]
.

Thus, we obtain (23), because ρ(1) = Y0 −W0.

Finally, we use the KKT conditions to check if the unique interior solution is a saddle

point. Assume κ+(γA−γP )κ2(νct )
2 > 0. It is easy to check the concavity of the Hamiltonian

in (e, θ), because HP
ee = −κ − γAκ2(νAt )2 + γPκ

2(νPt )2 = −κ − (γA − γP )κ2(νct )
2 < 0, and

Hθθ = Heθ = 0. Thus, H is concave in (e, θ). To check the convexity of the constrained

Hamiltonian in (µP , νP ), let L = HP−λP (µPt −α
2 (νPt −ν0)2): Lλµ = −1 Lλν = α(νPt −ν0) >

0, Lµν = 0, Lµµ = 0, Lνν = −(ζ(t) + 1− κet)2γP − 2θ + λPα > 0. For the last inequality,

we have used (A.51). Thus, the negative of the determinant of the bordered Hessian is

positive, confirming the convexity. 2

A.10 Proof of Corollary 2:

Comparative statics: Note that µc = α
2 (νc − ν0)2. This implies that dµc

dνc > 0. Recall that

the optimal volatility satisfies Υ(νct ; η, α, κ) = 0. From this, we find comparative statics for

(µc, νc) wrt (η, α, κ). Straightforward computation shows

Υν = −4κγAν
c

R3
t

γAe
η(1−t)

α
− ν0

(νct )
2
< 0,

Υη =
{

1 + (1 +Rt) γPκ(νct )
2
} (1− t)γAeη(1−t)

αR2
t

> 0,

Υα = −
{

1 + (1 +Rt) γPκ(νct )
2
} γAeη(1−t)

α2R2
t

< 0,

Υκ = −2γA(νc)2γAe
η(1−t)

αR3
t

< 0.
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From these inequalities, we immediately have the following comparative statics:

dν

dη
= −Υη

Υν
> 0,

dν

dα
= −Υα

Υν
< 0,

dν

dκ
= −Υκ

Υν
< 0.

Next, for comparative statics with respect to the outcome sensitivity β, note that

βν =
−2κγAν

c
t

R2
t

eη(1−t) < 0, βκ =
−γA(νct )

2

R2
t

eη(1−t), and βη = β(1− t).

Hence, we have the following result: for t < 1,

dβt
dη

= βν
∂νt
∂η

+ βη = − 1

Υν
[βνΥη − βηΥν ] > 0, if γP = 0.

This inequality holds because

βνΥη − βηΥν = (1− t)e
η(1−t)

αR4
t

[
−2κγAν

c
t γAe

η(1−t) {κ(γA + γP )(νct )
2γPκ(νct )

2 − 1
}

+(1 + γPκ(νct )
2)
ν0αR3

t

(νct )
2

]
> 0, if γP = 0.

On the other hand,

dβ

dα
= βν

∂ν

∂α
> 0,

dβ

dκ
= βν

∂ν

∂κ
+ βκ = βν(−Υκ

Υν
) + βκ = − 1

Υν
[βνΥκ − βκΥν ] < 0.

The last inequality holds, because

βνΥκ − βκΥν = −γA(νc)2

R2
t

eη(1−t) ν0

(νct )
2
< 0. 2
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12. Cvitanić, J., D. Possamäı and N. Touzi (2016): “ Dynamic Programming Approach

to Principal Agent Problems,” Finance and Stochastics, forthcoming.

13. Davis, M. H. A. (1973): “On the Existence of Optimal Policies in Stochastic Control”,

SIAM J. Control 11, 587-594.

57



14. Davis, M. H. A. (1979): “Martingale Methods in Stochastic Control,” in Stochastic

Differential Systems, ed. by M. Kohlmann and W. Vogel, Lecture Notes in Control

and Information Science 16, Springer Verlag, New York, 1979, 85 - 117.

15. Davis, M. H. A., and P. Varaiya (1973): Dynamic Programming Conditions for Par-

tially Observable Stochastic Systems, SIAM J. Control 11, 226 - 261.

16. Denis, L., and C. Martini (2006): A Theoretical Framework for the Pricing of Con-

tingent Claims in the Presence of Model Uncertainty, Annals of Applied Probability

16 (2), 827-852.

17. Elliott, R. (1982): Stochastic Calculus and Applications, Springer Verlag, New York.

18. Ellsberg, D. (1961): “Risk, Ambiguity, and the Savage Axioms,” Quarterly Journal

of Economics, 75, 643-669.

19. Epstein, L.G. and S. Ji (2013): “Ambiguous Volatility and Asset Pricing in Contin-

uous Time,” Review of Financial Studies, 26 (7): 1740-1786.

20. Epstein, L.G. and M. Schneider (2008): “Ambiguity, Information Quality and Asset

Pricing,” Journal of Finance 63, 197-228.

21. Epstein, L.G. and M. Schneider (2010): “Ambiguity, and Asset Markets,” Annual

Review of Financial Economics 2, 315-46.

22. Frydman, C. and D. Jenter (2010): “CEO compensation,” NBER Working Paper No.

16585.

23. Frydman, C. and R.E. Saks (2010): “Executive Compensation: A New View from a

Long-term Perspective, 1936-2005,” Review of Financial Studies 23, 2099-2138.

24. Gilboa, I.(1987): “Expected utility with purely subjective non-additive probabilities

Journal of Mathematical Economics, 16, p. 65-88.

58



25. Gilboa, I., and D. Schmeidler (1989): “Maximin Expected Utility with Non-unique

Priors,” Journal of Mathematical Economics, 18, 141-153.

26. Guay (1999): “The Sensitivity of CEO wealth to Equity Risk: and Analysis of the

Magnitude and Determinants,” Journal of Financial Economics, 53, 43-71.

27. Hellwig, M. and K.M. Schmidt (2002): “ Discrete-time Approximation of Holmström-

Milgrom Brownian-motion Model of Intertemporal Incentive Provision,” Economet-

rica, 70, 2225-264.

28. Holmstrom, B. and P. Milgrom (1987): Aggregation and Linearity in the Provision

of Intertemporal Incentives, Econometrica 55, 303-328.

29. Klibanoff, P., M. Marinacci, and S. Mukerji (2005): A Smooth Model of Decision

Making Under Ambiguity, Econometrica, 73, 18491892.
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