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Abstract

This paper solves for the set of equilibrium payoffs in bargaining with interdependent

values when the informed party makes all offers, as discounting vanishes. The seller of a

good is informed of its quality, which affects both his cost and the buyer’s valuation, but the

buyer is not. To characterize this payoff set, we derive an upper bound, using mechanism

design with limited commitment. We then prove that this upper bound is tight, by showing

that all its extreme points are equilibrium payoffs. Our results shed light on the role of

different forms of commitment on the bargaining process. In particular, we show that it

is the buyer’s inability to commit to a contract before observing the terms of trade that

precludes efficiency.
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1 Introduction

In this paper, we consider the standard buyer-seller trading problem with an informed seller

and interdependent (co-monotonic) values, and characterize the set of equilibrium payoffs as

discounting vanishes, when the seller makes the offers. That is, we consider a bargaining game

in which the informed party makes all offers. This contrasts with the standard analysis, in

which the uninformed party makes offers. But what is preferable for efficiency? Giving the

bargaining power to the informed party leads to a game with ample signaling opportunities,

and accordingly, to many equilibria. This may sound discouraging. However, this paper shows

that the set of equilibrium payoffs admits a simple characterization, and its defining constraints

intuitive interpretations.

Our setting is that of the lemon problem, as introduced by Akerlof (1970). Values are inter-

dependent, and the seller knows both the value and cost of the unit, while the buyer does not.1

There is common knowledge of gains from trade.

Because of the signaling opportunities that arise in the bargaining game, one might expect

equilibrium multiplicity, in the spirit of the folk theorem from repeated games. But incomplete

information imposes constraints on implementable allocations, so that it is unclear how large the

equilibrium payoff set can be. Our approach consists in (i) identifying constraints that the lack of

commitment imposes, (ii) characterizing the set of payoffs that can be achieved by mechanisms

that satisfy those constraints, and (iii) showing that all the payoffs satisfying those constraints

are actually equilibrium payoffs for low enough discounting. Just as the folk theorem for repeated

games establishes that, as far as payoffs are concerned, equilibrium puts no restriction beyond

feasibility and individual rationality, we show that, in bargaining, it puts no restriction on payoffs

1By a simple change of variable, all our results apply to the case in which it is the buyer who is informed and
who makes offers, and the seller is uninformed.
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beyond feasibility, individual rationality, and veto-incentive compatibility.

To understand this last requirement, recall that optimal mechanisms with interdependent

values under full commitment can exhibit peculiar properties. As follows from the characteri-

zations of Samuelson (1984) and Myerson (1985), the buyer may lose from participating in the

mechanism given the information that this mechanism conveys: if the buyer were to reconsider

his willingness-to-trade in light of the offer that he is supposed to accept, given that this offer

leads him to re-evaluate his expected value for the unit, he may very well prefer to pass. Al-

lowing him to do so is a feature of most real-world institutions, as Gresik (1991a) has pointed

out: buyers can rarely be coerced into accepting offers that make them worse off. And this is

certainly the case if the buyer and seller are engaged in bargaining.2

This property, which following Forges (1999) we refer to as veto-incentive compatibility,

imposes restrictions on the mapping from reported types to the distribution over offers that

the mechanism specifies. Veto-incentive compatibility, then, is a restriction on the graph of this

map: conditional on any given offer, the posterior belief of the buyer should be such that he is

willing to accept this offer.3

To make any progress, it becomes necessary to abstract from bargaining and to understand the

structure of veto-incentive compatible allocations. This is a non-trivial task: as one immediately

suspects, restricting attention to deterministic offers would entail a loss of generality. Solving

for the veto-incentive compatible allocations requires then, a priori, to work with the joint

distribution over the reported types and offers, while imposing constraints on each marginal

distribution: incentive compatibility for the seller imposes a constraint on the distributions

2Entry fees are an important exception, as they are sunk. Entry fees are rarely allowed in bargaining games
–the focus of our paper. This is not to say that entry fees are irrelevant in practice. On the contrary, our analysis
delineates the potential role of such fees.

3Note that this is not equivalent to ex post individual rationality, a stronger requirement that posits that the
buyer gains given the actual state of nature (i.e., his true valuation). The difference matters here, since values
are interdependent (see Gresik, 1991b, Forges, 1994, and Matthews and Postlewaite, 1989).
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conditional on types, veto-incentive compatibility for the buyer on the distributions conditional

on offers. This is a mass transportation programme, with all the theoretical and computational

difficulties that such programmes entail. Nevertheless, we show that, if there are finitely many

types (an assumption our model does not impose), it is enough to consider as many offers as

types. Moreover, we may assume that the k-th highest offer only comes from the seller’s k-th

highest type and above.4 More importantly, we show that whether a given allocation can be

implemented in a veto-incentive compatible way or not is a property of the maps from reports to

the probability of trade and expected price alone. That is, veto-incentive compatible allocations

can be characterized by a pair of functions, rather than a distribution. This does not imply that

the mechanism is deterministic, which it is typically not; rather, this says that whether such a

stochastic mechanism exists or not can be determined from the expected probabilities and prices

alone, by checking whether those satisfy some particular property.

Therefore, the problem reduces to a standard optimal control problem, to which variational

techniques can be applied. Veto-incentive compatibility is equivalent to the following: the nec-

essary and sufficient condition is that the buyer’s ex ante payoff, conditional on trading with

all types above a given threshold be nonnegative, for all possible values of this threshold. That

this condition is necessary is rather intuitive: veto-incentive compatibility requires that this offer

be no larger than the expected value conditional on this offer, which in turn is lower than this

conditional expected value if one further conditions on the type being above this threshold (by

monotonicity of v); hence, conditional on the seller’s type being above any given threshold, the

expected value must exceed the expected price. The proof of sufficiency is more intricate and

exploits the fact that cost and values are comonotonic, so that prices are non-decreasing in the

4This result is somewhat reminiscent of Bester and Strausz (2001), although our environment does not fit their
model. There are some technical differences (notably, a continuum of types vs. finitely many types), but most
importantly, we are not in their single-agent environment.
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type (in fact, non-negative correlation is necessary for the result).5

This characterization proves useful for our purpose, as it allows us to delineate the structure

of the set of extremal veto-incentive compatible allocations, which in turn allows us to prove that

veto-incentive compatibility is the only requirement that bargaining places on equilibrium payoffs,

alongside with individual rationality. Indeed, the temporal monopoly of the seller provides him

with a lower bound on his payoff, a security payoff, that he can guarantee no matter how patient

players are. More precisely, the seller can always secure a price equal to the buyer’s lowest

possible valuation.

Formally, we prove that every payoff vector that can be achieved by a veto-incentive compat-

ible allocation and that gives the seller this security payoff is an equilibrium payoff vector if the

two agents are patient enough. This is done by explicitly constructing equilibria whose payoff

converge to the desired extreme point.

With respect to the bargaining literature, our paper, alongside with Deneckere and Liang’s,

provides an understanding of the role of who makes the offers. For instance, the most efficient

equilibrium outcome when the seller makes all the offers is strictly more efficient than the equilib-

rium outcome when the buyer makes the offers. Sometimes, even the most inefficient equilibrium

does better. We provide sufficient conditions for bargaining to achieve constrained efficiency. In

those circumstances, our result implies that as little commitment as bargaining suffices. Con-

versely, if bargaining fails to achieve efficiency, then trading institutions will only be successful

in promoting efficiency if they manage to weaken the veto-incentive compatibility constraint, as

is the case, for instance, when the uninformed party is asked to commit to a screening contract.

Note, however, that our result is only about ex ante payoffs: Sequential rationality imposes

5As veto-incentive compatibility is a natural property of many economic environments, we hope that our
reduction from a multidimensional variational problem to a pair of one-dimensional ones will prove useful more
generally.
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further constraints in bargaining, since for instance, both the seller’s, and the buyer’s payoffs

must be individually rational, not only from the ex ante point of view, but from any history

onward. Indeed, as we shall see, there are allocations that are veto-incentive compatible and

give the seller his security payoff, and yet cannot be implemented in the bargaining game. As

we shall also see, this folk theorem does not extend to interim payoffs, and might fail to include

the equilibrium payoff in the equilibrium in the game in which the buyer makes all the offers

(Deneckere and Liang, 2006). Somewhat surprisingly, these other constraints do not affect the

set of ex ante payoffs.

Among related papers, Ausubel and Deneckere (1989) analyze the link between mechanism

design and bargaining in the special case of private values (with one-sided incomplete informa-

tion). They show that, when the uninformed party makes all the offers, a folk theorem holds.

That is, every incentive compatible, individually rational, direct bargaining mechanism is imple-

mentable by sequential equilibria, if the frequency of offers is high enough. On the other hand,

if the informed party makes the offer, a unique equilibrium outcome gets singled out as the fre-

quency of offers increases. Our paper establishes that, as one would suspect, lack of commitment

imposes more constraints with interdependent values than with private values. Interestingly

though, the set of equilibrium payoffs that can be achieved remains fairly easy to characterize,

as the feasible set of some programming problem. The paper by Deneckere and Liang that was

already mentioned provides a careful analysis of the bargaining game in which the (uninformed)

buyer makes all the offers, and they prove that the equilibrium outcome is then unique. We

comment further on the relationship with Deneckere and Liang, as well as with other papers, as

we proceed.

Section 2 develops the set-up. The main results are stated in Section 3, and their proofs are

provided in Section 4, with auxiliary results relegated to an online appendix. In Section 5, we
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discuss extensions. In particular, we discuss the case in which values are not co-monotonic; we

also analyze veto-incentive compatibility on the seller’s side, and argue that it is less stringent

a requirement than on the buyer’s side. In particular, adding veto-incentive compatibility for

the seller does not affect the set of achievable payoffs, whether one insists on veto-incentive

compatibility for the buyer or not.

2 The Set-Up

2.1 The Trading Problem

Consider a trading problem in which player 1, the seller, owns an indivisible object that

player 2, the buyer, wants to purchase. The two players are risk-neutral, with quasi-linear utility.

The players’ valuations are determined by the realization of a random variable that is uniformly

distributed over the unit interval, t ∼ U [0, 1]. That is, given t, the seller’s cost and the buyer’s

value for the object are given by c(t) and v(t) respectively. The functions c : [0, 1] → R+

and v : [0, 1] → R+ are assumed to be non-decreasing and piecewise continuously C1. We

also assume that c is piecewise C1 on (0, 1). Because v need not be a constant function, this

environment displays interdependent values, of which private values is a special case. Observe

that the assumption that t is uniformly distributed is made with no loss of generality, given the

restrictions imposed on the functions v and c. In Section 5, we extend some of the results to the

case in which c and v are not both monotonic.

Information is asymmetric. The seller is informed of the realization of the random variable,

and knows therefore both his cost and the buyer’s value for the object. We refer to this realization

as the seller’s type t ∈ T := [0, 1]. The buyer, on the other hand, does not observe this realization.

However, he knows the distribution of the random variable, and the functions v and c are common
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knowledge.

In particular, it is common knowledge that there are gains from trade. That is, we assume

that

inf
t
v(t)− c(t) > 0.

Such a “gap” rules out the special case in which v(0) = c(0) = 0, as in Akerlof (1970), but it

does not imply that the first-best allocation (which requires trade to take place with probability

one) is attainable if individual rationality is imposed. Such a first-best mechanism is individually

rational if and only if the buyer’s expected value exceeds the seller’s highest cost (see Lemma 1 of

Deneckere and Liang, 2006). While our results can be adapted to this case, the trading problem

becomes then rather uninteresting, and we rule it out in the sequel.

Our purpose is to characterize the equilibrium payoffs in the bargaining game in which the

seller makes all offers. To do so, we must understand what allocations can be achieved under

limited commitment. First, we shall consider the case in which the buyer cannot be forced to

trade if the actual offer that is being made leads to a negative expected payoff. Following Forges

(1999), we refer to this assumption as veto-incentive compatibility. Given the mechanism, and

for any outstanding offer, the buyer updates his expected value for the object. Veto-incentive

compatibility requires this conditional expectation to exceed the offer, whenever the mechanism

specifies trade in this event. This captures the notion that, in most trading environments, buyers

can always reject an offer for which they anticipate a loss. In the words of Gresik (1991a), “in

most markets each trader has the ability to refuse to trade when the “best” negotiated terms give

him negative utility.” For instance, a seller who puts up an object for sale in an auction house

commits to the eventual outcome, given the auction mechanism, but potential buyers can drop

out at any stage of the auction process. Note that, with interdependent values, this does not

ensure that the buyer will not experience regret, that is, that his realized value will exceed the
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price that he paid. In many markets, there is not much a buyer can do to renege on a purchase

for which his experienced utility falls short of the price that he paid. In this sense, the trade need

not be ex post individually rational. (Note that the two notions coincide in the case of private

values.) At the time of purchase, however, the potential buyer cannot be forced to accept an

outstanding offer, if he anticipates a loss, simply because he chose to participate in the trading

process.

The set of payoffs that can be achieved under this mechanism (as well as under the standard

“full-commitment” mechanism) will then be compared to the set of payoffs in the infinite-horizon

bargaining game with discounting, in which the seller makes all the offers.

2.2 Mechanisms

Direct mechanisms, that require the seller to report his type, provide a way for setting the

terms of trade. To be more formal, a direct mechanism is a probability transition µ from T

to {0, 1} × R+.
6,7 A direct mechanism, then, specifies whether trade occurs (the outcome “1”

is interpreted as trade, while the outcome “0” means no trade), and at what price, according

to some joint distribution, and given the announcement of the seller. We let x(t) denote the

probability of trade, given the announcement t. That is,

x(t) := µ(t)[1,R+]. (1)

6That is, for each t ∈ T , µ(t) is a probability distribution on {0, 1}×R+, and the probability µ(·)[A] assigned to
any Borel set A ⊂ {0, 1}×R+ is a measurable function of t ∈ T . That attention can be restricted to distributions
over the probability of trade and payment is a consequence of the revelation principle.

7It is not hard to see that the restriction to offers in R+ rather than R is without loss of generality for those
allocations, and hence payoffs, that we seek to characterize.

9



Without loss of generality, we assume that no payment is made if no trade occurs, that is, we

assume that µ(t)[0, {0}] = 1− x(t). If x(t) > 0, we let p(t) denote the expected price, given the

announcement t, i.e.

p(t) :=

∫

R+

pµ(t)[1, dp]/x(t), (2)

and set p(t) := 0 otherwise. Given x : T → [0, 1] and p : T → R+, the allocation (x, p)

is implementable if there exists a mechanism µ (which implements (x, p)) such that x and p

coincide everywhere with the functions that are defined by (1) and (2).

It follows from the revelation principle that attention can be restricted to direct mechanisms

in which the seller announces his type truthfully. Furthermore, under commitment, attention can

be restricted to mechanisms in which prices are deterministic, i.e. p(t) is the only price assigned

positive probability by µ(t)[1, ·], for all t.

Given some direct mechanism µ, the payoff to the seller of type t that reports s is given by

πS(s|t) := x(s)[p(s)− c(t)].

The mechanism µ is incentive compatible if, for all s, t ∈ T , πS(t) := πS(t|t) ≥ πS(s|t). We shall

also be interested in the ex ante payoff of the seller before his type is determined, that is, given

some incentive compatible mechanism µ,

πS = Et[π
S(t)] =

∫

T

πS(t)dt =

∫

T

x(t)[p(t)− c(t)]dt. (3)

Fix some incentive compatible mechanism µ. Suppose that the buyer is offered to trade at

some price p in the support of µ(t)[1, ·] for some t ∈ T . What is his expected payoff, conditional

on this outcome (1, p)? Given the mechanism µ, fix a version of the conditional distribution
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ν : ({0, 1}×R+)×B → [0, 1], where B is the Borel field on T . Given T ∈ B, we write ν(T |p) for

ν((1, p), T ) , the conditional probability assigned to the seller’s type being in the set T , given the

event (1, p) (with an abuse of notation, we also write ν(t|p) for ν({t}|p)). The buyer’s expected

payoff, given p, is then

πB(p) :=

∫

T

v(t)dν(t|p)− p.

The ex ante payoff of the buyer is given by

πB :=

∫

T

x(t)[v(t)− p(t)]dt. (4)

An incentive compatible mechanism µ is individually rational if πS(t) ≥ 0 for all t ∈ T , and

πB ≥ 0. Further, it is veto-incentive compatible if πB(p) ≥ 0 for all prices in the support of

µ. Because the buyer must break even given his conditional expectation, there is a priori no

reason to expect that it is sufficient to consider mechanisms that specify deterministic prices,

when considering veto-incentive compatible mechanisms.

To summarize, we shall be interested in determining the allocations (x, p) that can be imple-

mented by incentive compatible, individually rational and veto-incentive compatible mechanisms,

and in the set of ex ante payoffs π = (πB, πS) spanned by such allocations.8 For short, we refer

to this problem as the veto-incentive compatible program, and these allocations as the veto-

incentive compatible allocations, to be compared with the full commitment allocations, in which

the requirement of veto-incentive compatibility is dropped. The problem of determining the

latter set is well-known (see, in particular, Samuelson, 1984, and Myerson, 1985), and is referred

to in the sequel as the full commitment program.

Of particular interest is the (constrained) efficient allocation for each program, that is, any

8A set of allocations {(x, p)} spans the payoff set A ⊂ R
2 if the image of that set, by the mappings defined by

(3 ) and (4), is equal to A.
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allocation (x, p) that maximizes the overall gains from trade
∫

T
x(t)[v(t)−c(t)]dt, or equivalently,

that maximizes the sum of ex ante payoffs πS + πB.

2.3 The Bargaining Game

In Section 3.3, we shall finally consider the infinite-horizon bargaining game. Trivially, this

further reduces the set of implementable allocations. Deneckere and Liang (2006) have provided

a comprehensive analysis of the game in which the uninformed party, the buyer, makes all the

offers. Doing so allows to abstract from signaling issues, since after any history there is only

one action that the informed party can take that does not terminate the game. Therefore, the

analysis becomes tractable, although far from trivial, and the equilibrium outcome turns out to

be unique. We shall consider the opposite case, in which the seller makes all the offers, and show

that, in this case as well, it is possible to provide a simple characterization of the equilibrium

payoffs as bargaining frictions vanish. Furthermore, the best equilibrium improves upon the

equilibrium in the game in which the buyer makes the offers (in terms of efficiency).

Let us define the bargaining game more formally. Time is discrete, and indexed by n =

1, . . . ,∞. At each time or period n, the seller asks a price for the unit. After observing the price,

the buyer either accepts or rejects the price. If the price is accepted, the game ends. If the offer

is rejected, a period elapses and the seller asks for a price again. We shall allow for a public

randomization device in the initial period (for concreteness, think of a draw from the uniform

distribution on the unit interval), before the seller sets the first price. This allows us to focus

on the extreme points of the equilibrium payoff set, and we shall not refer to this randomization

device in the sequel.

The seller’s asking price can take any real value. An outcome of the game is a triple (t, n, pn),

with the interpretation that the realized type is t, and that the buyer accepts the seller’s price pn
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in period n (which implies that all previous prices were rejected). The case n = ∞ corresponds

to the outcome in which the buyer rejects all the prices (as a convention, set p∞ equal to 0).

Buyer and seller discount future payoffs at the common discount factor δ ∈ (0, 1). The seller’s

von Neumann-Morgenstern utility function over outcomes is his net surplus δn−1(pn− c(t)) when

n < ∞, and zero otherwise. This suggests the interpretation of the cost as an actual production

cost incurred at the time of the transaction, but an alternative and equivalent formulation is that

the seller derives a flow utility of (1− δ)c(t) in every period in which he holds on to the unit.

The buyer’s realized utility is δn−1(v(t)−pn) when the outcome is (t, n, pn), n < ∞, and zero

if n = ∞.9 The players’ expected utilities over lotteries of outcomes, or payoffs, are defined as

usual.

A history (of prices) hn−1 ∈ Hn−1 in case trade has not occurred by time n is a sequence

(p1, . . . , pn−1) of asking prices that the seller set and the buyer rejected (set H0 := ∅). A behavior

strategy σS for the seller is a sequence {σS
n}, where σ

S
n is a probability transition from T ×Hn−1

into R, mapping the seller’s type, the history hn−1 into a (possibly random) asking price. A

behavior strategy σB for the buyer is a sequence {σB
n }, where σ

B
n is a probability transition from

Hn−1 × R into {0, 1}, mapping the history hn−1 and the outstanding price into a probability of

acceptance (as before, “1” denotes acceptance, and “0” rejection). We use the perfect Bayesian

equilibrium (PBE) concept as defined in Fudenberg and Tirole (1991, Definition 8.2).10 Given

some (perfect Bayesian) equilibrium, we follow standard terminology in calling a seller’s offer

serious if it is accepted by the buyer with positive probability. An offer is losing if it is not

serious. Clearly, the specification of losing offers in an equilibrium is, to a large extent, arbitrary.

9Discounting plays no role in the optimality of the buyer’s strategy. Results would also apply to the case of a
sequence of short-run buyers, as long as we interpret the buyer’s payoff as the discounted sum of these short-run
buyers’ payoffs.

10Fudenberg and Tirole define perfect Bayesian equilibria for finite games of incomplete information only. The
suitable generalization of their definition to infinite games is straightforward and omitted.
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Given some equilibrium σ = (σB, σS), we denote by πS(σ) and πB(σ) the ex ante payoff of

the seller and the buyer, respectively. Note that this involves taking expectations with respect

to the seller’s type. Given δ, the payoff vector π = (πB, πS) can be achieved in the bargaining

game if there exists an equilibrium σ of the bargaining game such that π = (πB(σ), πS(σ)).

Let E(δ) denote the set of equilibria in the bargaining game with discount factor δ, and

Π(δ) ⊂ R
2 the set of payoff vectors given discount factor δ. Further, define Π := lim infδ→1Π(δ)

and Π := lim supδ→1Π(δ) as the inner and outer limits of the equilibrium payoff set as frictions

vanish. We shall show that those two sets are equal, and provide a simple characterization of

this set.

3 Main Results

3.1 Preliminaries: The Full Commitment Program

We start by recalling the characterizations obtained by Samuelson (1984) and Myerson (1985)

for the set of ex ante payoffs that can be achieved through mechanisms that satisfy incentive

compatibility and individual rationality.

For later purposes, it is useful to define the following. Given a mechanism µ, define the

expected payment p̄(t) received by type t ∈ T as

p̄(t) := x(t)p(t).

Note that specifying the function p̄ : T → [0, 1] is equivalent to specifying the function p, given
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our convention that p(t) = 0 whenever x(t) = 0. Incentive compatibility is the requirement that

πS(t) = p̄(t)− x(t)c(t) ≥ p̄(s)− x(s)c(t),

for all s, t ∈ T . This implies, in particular, that

πS(t) ≥ lim
s↓t

πS(s|t),

for all t ∈ T . We refer to this set of constraints as the set of local incentive compatibility

constraints.

Suppose that the local incentive compatibility constraints are binding for all t ∈ T .11 It is

then standard to show that πS is absolutely continuous and equal to, for all t, 12

πS(t) = πS(1) +

∫ 1

t

x(s)dc(s).

In this case, all expected payments are uniquely determined by the probabilities of trade (and

the price p̄(1)) through

p̄(t) = p̄(1)− x(1)c(1) + x(t)c(t) +

∫ 1

t

x(s)dc(s).

Let us also define the buyer’s payoff B(t) accruing from all seller’s types above t, given some

11Because the cost function need not be continuous, there are allocations that are implementable in the full
commitment program for which some local incentive compatibility constraints are not binding.

12Here and in what follows,
∫

T
x(s)dc(s) :=

∫

(0,1)
x(t)c′(t)dt +

∑

t∈Dc x(t)(c(t) − lims↑t c(s)), where c′ is the

derivative of c on each interval, Dc is the set of discontinuities of c, and x is assumed to be right-continuous (since
c and v are, this is without loss of generality). Later references to derivatives have to be understood similarly.
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allocation (x, p), as

B(t) :=

∫ 1

t

(x(s)v(s)− p̄(s))ds. (5)

Note that B(0) = πB. Further, if all local incentive compatibility constraints are binding, we can

express B(t) as a function of x (and p̄(1)) only. Explicitly,

B(t) =

∫ 1

t

[x(s)v(s)− (p̄(1)− x(1)c(1) + x(s)c(s) +

∫ 1

s

x(u)dc(u))]ds

=

∫ 1

t

[x(s)(v(s)− c(s))−

∫ 1

s

x(u)dc(u)]ds− (1− t)(p̄(1)− x(1)c(1)).

Trivially, given the revelation principle, the set of implementable allocations in the full commit-

ment program is characterized by incentive compatibility and individual rationality. A sharper

characterization can be obtained for the set of payoff vectors that can be achieved. The following

theorem follows from the results of Samuelson (1984) and Myerson (1985).

Theorem 1 (Samuelson, 1984, Myerson, 1985) Suppose that c(1) ≥
∫

T
v(t)dt. In the full com-

mitment program:

1. The payoff set can be obtained, without loss of generality, by assuming that all local incentive

compatibility constraints bind, and that the highest seller type’s payoff is zero: πS(1) = 0;

2. The payoff set is spanned by the set of non-increasing functions x : T → [0, 1] subject to

∫ 1

0

[x(s)(v(s)− c(s))−

∫ 1

s

x(u)dc(u)]ds ≥ 0,

given expected payments, for all t ∈ T ,

p̄(t) = x(t)c(t) +

∫ 1

t

x(s)dc(s).
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3. The payoff set is a convex polygon whose extreme points are achieved by functions x : T →

[0, 1] that are step functions with either two or three steps; the origin is an extreme point,

and for all other extreme points, it can be assumed that x(0) = 1.

Note that the constraint in the second part of the theorem is simply the requirement that

B(0) ≥ 0, given the definition of p̄. The requirement that x be non-increasing ensures incentive

compatibility, given the definition of p̄. Theorem 1.2 states that any non-increasing function x ∈

[0, 1] satisfying B(0) ≥ 0 (a constraint that only involves the function x) is part of an allocation

that is implementable in the full commitment program, along with the expected payments defined

in the theorem, and that these allocations are a sufficient class to generate all the payoffs that can

be achieved in this program. As mentioned, one mechanism implementing any such allocation

is a mechanism with deterministic prices. Of course, there are other mechanisms implementing

this allocation, and there are other allocations that are implementable, but they do not lead to

any additional payoff vectors.

In light of this characterization, the payoff set of the full commitment program can be obtained

by considering a family of continuous linear programs, in which one maximizes λ·π over functions

x satisfying the constraints given in Theorem 1.2, where λ ∈ R
2 are the (possibly negative)

weights on the buyer and seller’s payoffs. The maxima of these programs determine the extreme

points of the payoff set, and it is then a standard result that such extreme points are themselves

achieved by extreme points of the admissible set, i.e., by step functions.

The (constrained) efficient allocation takes a very simple form, given that it is the solution of

a maximization problem in which both the objective and the single constraint are linear. Namely,

as Samuelson and Myerson show, the ex ante efficient mechanism takes the following form: there
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exist 0 < t1 ≤ t2 ≤ 1 such that

x (t) =























1 t ∈ [0, t1) ,

x t ∈ [t1, t2] ,

0 t > t2,

where

x :=
t1
(

vt10 − c (t1)
)

t2c (t2)− (t2 − t1) v
t2
t1
− t1c (t1)

, (6)

and vt10 , v
t2
t1

are the conditional expectations of the buyer’s value over the relevant intervals,

namely

vt10 := 1
t1

∫ t1

0
v (t) dt,

vt2t1 := 1
t2−t1

∫ t2

t1
v (t) dt.

As can be verified, the threshold t1 (resp., t2) minimizes (resp., maximizes) the ratio

∫ t2

t1
(v(t)− c(t))dt
∫ t2

t1
tc′(t)dt

,

given t2 (resp., t1). The numerator measures the gains from trade with the types in the interval

[t1, t2], while the denominator measures the information rents of the seller’s types in that inter-

val.13 Indeed, if the buyer were to trade with, and only with, the seller’s types [0, t], his expected

gains would be at most

Y (t) :=

∫ t

0

(v(s)− c(t))ds =

∫ t

0

(v(s)− c(s)− sc′(s))ds, (7)

13To see this, note that, from the formula for Y given by (7),
∫ t2

t1
sc′(s)ds is the difference between the gains

from trade and the buyer’s additional profit accruing from the types [t1, t2).
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a function that plays an important role in Samuelson and Myerson’s analysis, as in ours.

3.2 The Veto-Incentive Compatible Program

Recall that the veto-incentive compatible program is obtained by adding to the full com-

mitment program the requirement that, for any outstanding offer, the buyer’s payoff is always

non-negative, conditional on the outstanding offer, given his updated beliefs. At first sight, these

constraints appear rather intractable, since these are restrictions on the marginal distributions

over offers derived from the joint distribution over types and offers that a mechanism defines.

The main result of this subsection establishes that, in fact, these constraints can be formulated

in terms of the probabilities of trade alone. Therefore, as in the full commitment problem, it is

enough to consider functions x, rather than distributions defined by µ, to determine the payoff

set, so that standard variational techniques can be applied.

We first characterize implementable allocations, and then achievable payoffs. The following

proposition, proved in Section 4, characterizes the set of allocations that can be implemented

in the veto-incentive compatible program. Recall that incentive compatibility and individual

rationality are minimal requirements.

Proposition 1 An incentive compatible, individually rational allocation (x, p) is implementable

in the veto-incentive compatible program if and only if, for all t ∈ T ,

B(t) =

∫ 1

t

x(s)[v(s)− p(s)]ds ≥ 0.

Equipped with Proposition 1, it is then straightforward to characterize the set of payoffs that

can be achieved in the veto-incentive compatible program.

Theorem 2 Suppose that c(1) ≥
∫

T
v(t)dt. In the veto-incentive compatible program:
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1. The payoff set can be obtained, without loss of generality, by assuming that all local incentive

compatibility constraints bind, and that the highest seller type’s payoff is zero: πS(1) = 0;

2. The payoff set is spanned by the set of non-increasing functions x : T → [0, 1] subject to,

for all t ∈ T ,
∫ 1

t

[x(s)(v(s)− c(s))−

∫ 1

s

x(u)dc(u)]ds ≥ 0, (8)

given expected payments, for all t ∈ T ,

p̄(t) = x(t)c(t) +

∫ 1

t

x(s)dc(s).

Note that the constraint in the second part of the theorem is simply the requirement that

B(t) ≥ 0 for all t ∈ T , given the definition of p̄. Theorem 2.2 states that any non-increasing

function x ∈ [0, 1] satisfying B(t) ≥ 0 for all t (a constraint that only involves the function x) is

part of an allocation that is implementable in the veto-incentive compatible program, along with

the expected payments defined in the theorem, and that these allocations are a sufficient class

to generate all the payoffs that can be achieved in this program. Because of the veto-incentive

compatibility constraint, the mechanism that is constructed in the proof of this theorem is not,

however, a mechanism with deterministic prices.

The constraints B(t) ≥ 0 (as stated in Theorem 2.2 in terms of the probabilities x(t) only)

are linear (in x) as well. It follows that the payoff set can be once again determined by using

continuous linear programming. There is, however, one difficulty that is common to incentive

problems with hidden characteristics and a continuum of types, namely the requirement that the

function x be non-increasing. Fortunately, tools exist for such constraints. See, in particular,

Hellwig (2009). What is the structure of the solution for boundary points of the payoff set? It
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depends, of course, on the specific boundary point and the underlying functions c and v. Note

that, by differentiating twice (8), we obtain that the probability x must satisfy the ordinary

differential equation

x′(t)(v(t)− c(t)) + x(t)v′(t) = 0

on any such interval. The problem then reduces to identifying this finite partition. Indeed,

examples can be constructed for which B is identically zero over some interval, and therefore,

the allocation need not be a step function, nor the payoff set a convex polygon (the set of extreme

points need not be finite).

It is an easy consequence of this theorem that the payoff vector maximizing the buyer’s payoff

in the veto-incentive compatible program coincides with the payoff vector that maximizes the

buyer’s payoff in the full commitment program.14 The seller’s highest payoff is either equal to,

or smaller than the corresponding payoff in the full commitment program. Sufficient conditions

for equality will be provided in the next section.

3.3 Bargaining Game

We finally consider the bargaining game. Clearly, for any history, given any outstanding

offer that is accepted with positive probability, sequential rationality requires that the buyer’s

conditional payoff from accepting it must be non-negative. Therefore, the ex ante payoffs that can

be achieved via bargaining must form a subset of the payoff set of the veto-incentive compatible

program. But bargaining imposes additional constraints. For instance, since v is non-decreasing,

it is common knowledge that the object is worth at least v(0) to the buyer. Therefore, the

seller of type t can secure a payoff of v(0) − c(t), since he can always insist on such an offer.

14In fact, this follows from Proposition 1 in Samuelson (1984), as he shows that the buyer’s favorite outcome
is a take-it-or-leave it offer, so that veto-incentive compatibility does not bind at this allocation.
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(The formal argument is standard and omitted. See, for instance, Fudenberg, Levine and Tirole

(1985), Lemma 2, which establishes that no lower offer is ever submitted in equilibrium, so that

any such offer is necessarily accepted.) It is worth pointing out here that, if (x, p) is incentive

compatible, then πS(0) ≥ v(0) − c(0) implies that πS(t) ≥ v(0)− c(t) for all t ≥ 0, so that the

aforementioned requirement reduces to πS(0) ≥ v(0)− c(0). Since this provides a lower bound

on the seller’s payoff, we may think of this as the seller’s reservation payoff in the bargaining

game, a strengthening of individual rationality. Note that the most efficient mechanism in the

veto IC program automatically satisfies the reservation payoff constraint.

One might wonder whether bargaining imposes additional restrictions on achievable payoffs.

The main result of this subsection shows that this is not the case, as the discount factor tends

to one.

Before stating this result, note that, to every equilibrium σ, and for each seller’s type t, one

can associate a probability of trade x(t), namely the discounted total probability with which

trade occurs under σ, given t, or

x(t) = Eσ

[

∑

n

δn−11σB
n (hn−1,pn)=1

]

,

where 1A is the indicator function of the event A. Similarly, given some equilibrium σ, we

let p̄(t) ∈ R denote the expected discounted payment received by type t in this equilibrium.

References to local incentive compatibility, or individual rationality, can be understood in terms

of the pair (x, p̄). Recall that Π := lim infδ→1Π(δ) and Π := lim supδ→1Π(δ).

Theorem 3 Suppose that c(1) ≥
∫

T
v(t)dt. Then Π = Π =: Π. Further, this set of payoff is
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equal to the set of payoffs that can be achieved by veto-incentive compatible allocations for which

πS(0) ≥ v(0)− c(0).

This result establishes that the only additional constraint on payoffs imposed by the bargaining

game is that the lowest seller’s type must secure his reservation payoff. In terms of efficiency,

for instance, this theorem implies that there is no difference between the best outcome under

bargaining and in the best veto incentive compatible mechanism.

However, it is not true that any individually rational, incentive compatible allocation satis-

fying veto-incentive compatibility, and giving the lowest seller’s type his reservation payoff can

be necessarily implemented in the bargaining game. In Section 5.2, we provide an example of

such an allocation, and explain why it cannot be implemented. For any such allocation, our

result implies that there exists a payoff-equivalent allocation (in terms of ex ante payoffs for

the seller and the buyer) that can be implemented. Therefore, bargaining imposes restrictions

on implementable allocations that go beyond veto-incentive compatibility (and the restriction

imposed by the security payoff), but not on payoffs.

Which constraints bind depends on the vertex of the set Π that is considered. On the

upper boundary of this set, it can be assumed, without loss of generality, that all local incentive

compatibility constraints are binding, and that the highest type’s payoff of the seller trading with

positive probability is zero: πS(1) = 0; on the other hand, for those vertices that minimize some

convex combination of the seller’s and buyer’s payoff, the incentive compatibility constraints bind

“downward,” that is, for all t ∈ T ,

πS(t) = lim
s↑t

πS(s|t),
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with the boundary condition that the trading price of the highest seller’s type t is given by the

minimum of v(t) and either lims↓t c(s), t < 1, or c(1) if t = 1.

Given that the bargaining game imposes only one additional linear constraint to the veto-

incentive compatible program, it can be analyzed via linear programming as well. Depending

on c and v, this additional constraint can create a discontinuity (i.e., a step) in the function x

which has no counterpart in the previous (veto-incentive compatible) program, and arises before

the first binding constraint B(t) = 0. Notice also that the constraint that πS(0) ≥ v(0) − c(0)

implies that the seller secures the ex ante payoff E[(v(0)−c(t))+] (because, as already mentioned,

it implies that πS(t) ≥ v(0)− c(t) for all t). However, the two requirements are not equivalent,

as the example in the next subsection illustrates.

Theorem 3 is proved in the next section. In doing so, we shall show that the payoff vector

maximizing the seller’s payoff, which is also the efficient payoff vector in this set, coincides

with the payoff vector maximizing the seller’s payoff in the veto-incentive compatible program.

That is, as far as efficiency is concerned, bargaining imposes no constraint beyond veto-incentive

compatibility. In all three programs, the ex ante payoff of the buyer must be zero in any efficient

allocation.

The proof is by construction. This requires us to specify beliefs after out-of-equilibrium offers.

While sequential equilibrium is not well-defined in this game (the action space being infinite),

our equilibrium can be made sequential by restricting this action set to a sufficiently rich but

finite set of values. In this sense, our choice of off-path beliefs, while dictated by convenience,

is not particularly fragile. It would be of interest, of course, to examine how the use of more

restrictive concepts (such as perfect sequential equilibrium) would alter our results, but this is

beyond the scope of this paper.
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3.4 Examples and Economic Implications

To illustrate the results, we consider here an example with three equiprobable types.

Example 4 The functions v and c are step functions with three steps, and the two discontinuities

occur for both functions at t = 1/3 and 2/3. To simplify, we refer to those three types as 1, 2,

and 3. Values and costs are given by

(c1, c2, c3) = (0, 4, 9), and (v1, v2, v3) = (2, 5, 12),

so that a higher index means a higher value, but also a higher cost. The left panel of Figure 1

represents the three payoff sets. The largest area is the set of payoffs in the full commitment case,

while the smaller area is the payoff set for the veto-incentive compatible program. The smallest

payoff set is the equilibrium payoff set in the bargaining game as δ → 1. By changing only one

parameter, namely, by increasing v2 from 5 to 10, the payoff sets change considerably. See right

panel. The two points (440/1323, 20/63) on the left, and (56/243, 2/9) on the right, represent the

unique equilibrium payoff vectors in the bargaining game in which the (uninformed) buyer makes

the offers in every period, as characterized in Deneckere and Liang (2006) for δ → 1.

This example illustrates several points that hold more generally. First, as mentioned, the

buyer’s highest payoff coincides in the veto-incentive compatible and the full commitment pro-

grams, but clearly, it might be lower in the equilibrium of the bargaining game. More importantly,

the seller’s highest payoff coincides in the bargaining game and the veto-incentive compatible

program. This highest payoff, however, might fall short of the highest payoff in the commitment

program.15

15Note also that, as is clear from the left panel, the restriction on achievable payoffs imposed by the lowest
seller’s type reservation payoff is not equivalent to the restriction that the seller obtains the ex ante payoff
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Figure 1: Full commitment, Veto-Incentive Compatible, and Limiting Equilibrium Payoff Sets.

When is (constrained) efficiency possible under bargaining, i.e., when is veto-incentive com-

patibility consistent with efficiency? Obviously, this is trivially the case if the optimal allocation

under full commitment is such that no seller’s type trades with interior probability. If some

seller’s types do trade with interior probability, sufficient conditions can be given in terms of the

buyer’s gain function Y (see (7)). Because Y (0) = 0 and Y ′(0) > 0, yet Y (1) < 0, Y admits a

smallest local maximizer t. Note that t solves v(t) − c(t) = tc′(t) (assuming differentiability at

this point for the sake of this discussion). Let also t̄ denote the smallest strictly positive root of

E[(v(0)− c(t))+] = 2/3. Consider the vertex that minimizes the seller’s payoff, subject to the buyer’s payoff being
zero. The requirement that the seller’s lowest type gets at least v(0) − c(0) drives the seller’s ex ante payoff up
to 17/18 > 2/3. In this example, driving the seller’s ex ante payoff down to E[(v(0) − c(t))+] is only possible in
some equilibrium for high enough values of the buyer’s payoff.
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Y . We show in the online appendix (Appendix C) that efficiency is attainable in bargaining if

∀t ≥ t̄,

∫ t

t

(v(s)− c(t))ds ≥ 0. (9)

This condition is satisfied in the examples typically given in the literature (for instance, Samuel-

son’s two-step example), but obviously, as our example above shows (left panel), it is not always

true that efficiency can be achieved. Note that the condition becomes easier to satisfy as gains

from trade (v(t) − c(t)) increase, and information rents (tc′(t)) decrease (both t and t̄ then

increase). We summarize this discussion as follows.

Constrained efficiency can be achieved by bargaining as δ → 1 (even when the first-

best outcome cannot) if gains from trade are high, or information rents low enough.

Because bargaining can achieve the same degree of efficiency as any (incentive compatible,

individually rational) mechanism that satisfies veto-incentive compatibility, this implies that

market institutions may only improve upon bargaining if they constrain the buyer somehow, in a

way that weakens the veto-incentive compatibility constraint. This seems rather demanding, but

not impossible. For instance, screening contracts by the uninformed party (here, the buyer), as in

Rothschild and Stiglitz (1976), dispense with the requirement of veto-incentive compatibility: the

uninformed party offers (and commits) to a menu of price and quantity pairs, and the informed

party chooses from them. This is not quite as demanding in terms of commitment as full

commitment, although the difference is small (see Mylovanov, 2008). In any event, there is little

to gain from less constraining trading institutions. Note, for instance, that communication will

not expand the set of equilibrium outcomes. (Formally, the set of allocations that are achieved

by communication equilibria is the same as those achieved by perfect Bayesian equilibria in the

bargaining game, as δ → 1). Fortunately, as discussed, circumstances in which veto-incentive
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compatibility does not reduce efficiency are quite common, and in those circumstances, as little

commitment as bargaining suffices.

How do equilibrium outcomes in bargaining compare with the unique equilibrium outcome

derived by Deneckere and Liang, when the buyer makes all the offers? In our two examples, the

seller does worse in the latter equilibrium outcome than in any equilibrium outcome of our game.

However, it is easy to construct examples in which this is not the case. In fact, the following can

be shown (details available upon request).

Lemma 1

i. The allocation from the unique limit equilibrium outcome of the game in which the buyer

makes all the offers is an equilibrium allocation in the game in which the seller makes all the

offers if and only if it gives the lowest seller’s type his reservation payoff (i.e., v(0)− c(0)),

provided that the discount factor is sufficiently close to one.

ii. For δ close enough to one, the game in which the seller makes all the offers admits an

equilibrium outcome that is strictly more efficient than the limit equilibrium outcome of the

game in which the buyer makes all the offers.

The first statement should come as no surprise given that the allocation that results from

the bargaining game in which the buyer makes all the offers must be veto-incentive compatible.

This follows from the “skimming” property in bargaining: because, from any history onward,

the remaining seller’s types are all types above some threshold zn, and because the buyer’s

continuation payoff must be non-negative, it must be that B(zn) ≥ 0.16

16If zn and zn+1 denote consecutive threshold types, the inequality B(t) ≥ 0 for t ∈ (zn, zn+1) follows from the
fact that the types in [zn, t] are the most unprofitable ones (for the buyer) above zn.
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The second statement is immediately implied by the first, given that the buyer secures a

strictly positive payoff when he makes the offers, yet within the set of veto-incentive compatible

allocations, efficiency is maximized when the buyer gets zero profits.

Of course, this lemma compares the best equilibrium outcome in one game with the unique

equilibrium outcome in the other. There might be equilibria in the game in which the seller

makes all the offers that are more inefficient that the equilibrium outcome when the buyer makes

offers. Rather surprisingly, our example illustrates that this need not be true, however. As is

obvious from the right panel of Figure 1, efficiency might be necessarily higher when the seller

makes all the offers. This makes apparent that having the seller make all the offers does not

simply “expand” the set of equilibria.

4 Main Proofs

4.1 Proof of Proposition 1 and Theorem 2

The proof of Theorem 2 will be divided in several steps. First, we establish Proposition 1,

which immediately implies Theorem 2.2, given Theorem 1. We will then show how this, along

with some other observations, can be used to establish Theorem 2.1.

The proof of Proposition 1 is itself divided into three parts. First, we show that, given an

allocation (x, p), the condition that B(t) be non-negative for all t is necessary for the allocation

to be implementable in the veto-incentive compatible program. Second, we turn to sufficiency.

We first show that the conditions are sufficient if the functions c and v are step functions. Then

we show how, by appropriate limiting arguments, the result follows for any functions c and v

satisfying the assumptions of the model.
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4.1.1 Proof of Proposition 1

As mentioned, the argument is divided into three steps. First comes necessity.

Lemma 2 If (x, p) is an allocation that is implementable in the veto-incentive compatible pro-

gram, then, for all t ∈ T ,

B(t) =

∫ 1

t

(x(s)(v(s)− p(s))ds ≥ 0.

Proof. Fix an allocation (x, p) that is implementable in the veto-incentive compatible pro-

gram, and let µ denote the corresponding mechanism. Observe that, for all t ∈ T ,

∫ 1

t

x(s)p(s)ds =

∫ 1

t

∫

R+

pµ(s)[1, dp]ds

≤

∫ 1

t

∫

R+

(
∫

T

v(u)dν(u|p)

)

µ(s)[1, dp]ds

≤

∫ 1

t

∫

R+

∫

u≥t
v(u)dν(u|p)

ν([t, 1]|p)
µ(s)[1, dp]ds

=

∫ 1

t

x(s)v(s)ds.

The first equality follows from the definition of the function p (see (2)). The first inequality is

implied by veto-incentive compatibility; the second follows from the monotonicity of v;17 the last

equality, from the law of iterated expectations. This establishes the claim.

We now show sufficiency in the special case in which c and v are step functions.

Lemma 3 If c and v are step functions, and (x, p) is an allocation that is implementable in the

full commitment program, and such that, for all t ∈ T ,

B(t) =

∫ 1

t

(x(s)(v(s)− p(s))ds ≥ 0,

17That is, with the understanding that the integrand is zero when ν([t, 1]|p) = 0.
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then (x, p) is also implementable in the veto-incentive compatible program.

Proof. Since c and v are step functions, we may equivalently describe the environment as

finite: there are N types, with cost and values

c1 ≤ c2 ≤ · · · ≤ cN , and v1 ≤ v2 ≤ · · · ≤ vN .

To avoid some trivial but distracting complications, we shall assume that the inequalities in-

volving costs are strict: ∀i < n, ci < ci+1. The probability of each type (i.e., the length of

each step) is denoted qi.
18 An allocation, then, reduces to a pair of vectors x = (x1, . . . , xN),

p = (p1, . . . , pN).

The hypothesis that B(t) ≥ 0 for all t ∈ T implies that, for all J = 1, . . . , N ,

N
∑

i=J

xiqivi ≥
N
∑

i=J

xiqipi. (10)

We shall show that any incentive-compatible, individually rational allocation satisfying this con-

dition can be implemented in the veto-incentive compatible program, using N prices. The proof

is by induction on the number of types (uniformly over all cost, values and probabilities).

Note that this is true for N = 1. In that case, the buyer’s individual rationality constraint

implies p1 ≤ v1 (which trivially implies our hypothesis), while the seller’s individual rationality

constraint implies p1 ≥ c1. Note then that any such allocation (x1, p1) with p1 ∈ [c1, v1] satisfies

the veto-incentive compatibility constraint: conditional on p1, the buyer assigns probability one

to the (unique) type 1, and since v1 ≥ p1, his payoff conditional on this event is positive.

18More precisely, the number of types N is the number of types ti ∈ T for which either c or v (or both) has a
discontinuity. The length of the interval refers to the intervals defined by the corresponding partition of T .
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Assume then that, whenever there are N types, and for any collection of costs, values and

probabilities {(c1, v1, q1), . . . , (cN , vN , qN)} (with 0 ≤ ci < vi, here and in what follows), any

incentive compatible, individually rational allocation {(x1, p1), . . . , (xN , pN)} that satisfies (10)

can be implemented in the veto-incentive compatible program with N (not necessarily distinct)

prices. Consider the case of N + 1 types, with cost, values and probabilities {ci, vi, qi}
N+1
i=1 . Fix

some incentive compatible, individually rational allocation

{(x1, p1), . . . , (xN+1, pN+1)} ,

satisfying (10). The argument is divided into three steps.

Step 1. Note that, by (10) with J = N + 1, pN+1 ≤ vN+1. Also, incentive compatibility

implies that pN ≤ pN+1.
19 It follows that there exists z ∈ [0, xN+1/xN ] such that

zxNpN + (xN+1 − zxN ) vN+1 = xN+1pN+1. (11)

To see this, note that, for z = 0, the left-hand side reduces to xN+1vN+1, which is at least as

large as the right-hand side, while for z = xN+1/xN , the left-hand side reduces to xN+1pN , which

is at most as large as the right-hand side. Fix some z satisfying (11).

Step 2. Consider the game in which there are N types, with costs and values {ĉi, v̂i, q̂i}
N
i=1,

defined as follows. Costs are unchanged: ĉi := ci, all i = 1, . . . , N . Values are given by

v̂i := vi for i < N, and v̂N :=
qNvN + qN+1zvN+1

qN + qN+1z
,

19The argument is standard: considering the two incentive compatibility conditions involving types N and
N + 1 only, it follows that xN ≥ xN+1 and pN ≤ pN+1.
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(note that v̂N ≥ vN ≥ ĉN), while probabilities are

q̂i :=
qi

∑

j≤N qj + qN+1z
for i < N, and q̂N :=

qN + qN+1z
∑

i≤N qi + qN+1z
.

We claim that the allocation {(xi, pi)}
N

i=1 (derived from {(xi, pi)}
N+1
i=1 ) is implementable, in this

new environment, in the veto-incentive compatible program.

First, because costs are the same in this environment as in the original environment, individual

rationality and incentive compatibility for all seller’s types is implied by the fact that these were

satisfied by the allocation {(xi, pi)}
N+1
i=1 in the original environment.

Therefore, to show that this allocation is implementable in the veto-incentive compatible

program, given the induction hypothesis, it suffices to show that, for all J ≤ N ,

N
∑

i=J

xiq̂iv̂i ≥
N
∑

i=J

xiq̂ipi.

(Note that individual rationality for the buyer is the special case J = 1.) Simplifying,

N
∑

i=J

xiq̂i (v̂i − pi) =
1

∑

i≤N qi + qN+1z

[

∑N−1
i=J xiqi (vi − pi) + qNxN (vN − pN) + qN+1xNz (vN+1 − pN)

]

.

Adding and subtracting (xN+1 − xNz) vN+1 to the expression inside the square brackets yield

N
∑

i=J

xiq̂i (v̂i − pi) =
1

∑

i≤N qi + qN+1z







∑N−1
i=J xiqi (vi − pi) + qNxN (vN − pN) +

qN+1 (xN+1vN+1 − xNzpN − (xN+1 − xNz) vN+1)






.
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Using the definition of z, we finally obtain

N
∑

i=J

xiq̂i (v̂i − pi) =
1

∑

i≤N qi + qN+1z

[

N+1
∑

i=J

xiqi (vi − pi)

]

≥ 0,

where the last inequality uses that, by assumption, the allocation satisfies (10).

Therefore, by the induction hypothesis, the allocation {(xi, pi)}
N

i=1 is implementable in the

veto-incentive compatible program, in this new environment, with N prices. Let {r̂1, . . . , r̂N}

be the prices that implement this allocation in the veto-incentive compatible program, and

{x̂1 (r) , . . . , x̂N (r)}r∈{r̂1,...,r̂N} be the probabilities assigned to these prices.

Step 3. We now construct a set of prices {r1, . . . , rN+1} and probabilities {x1 (r) , . . . , xN+1 (r)},

r ∈ {r1, . . . , rN+1}, that implement {(x1, p1), . . . , (xN+1, pN+1)} in the veto-incentive compatible

program, in the original environment.

The prices are given by

{r1, . . . , rN+1} = {r̂1, . . . , r̂N} ∪ {vN+1} .

The probabilities are given by, for i < N + 1,

xi (r) = x̂i (r) , ∀r ∈ {r̂1, . . . , r̂N} , and xi (vN+1) = 0,

and

xN+1 (r) = zx̂N (r) ∀r ∈ {r̂1, . . . , r̂N} , and xN+1 (vN+1) = xN+1 − zxN .

It is immediate to see that, conditional on any given r ∈ {r̂1, . . . , r̂N}, the conditional value is the

same as in the modified environment, so that the buyer’s veto-incentive compatibility constraint
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holds. This is also true if r = vN+1, because the only seller’s type trading at this price is type

N +1. Furthermore, by construction, buyer i trades with probability xi and receives an average

price pi. This completes the proof.

Finally, we can show sufficiency for arbitrary cost and value functions.

Lemma 4 If (x, p) is an individually rational and incentive compatible allocation such that, for

all t ∈ T ,

B(t) =

∫ 1

t

x(s)[v(s)− p(s)]ds ≥ 0,

then (x, p) is implementable in the veto-incentive compatible program.

Proof. Fix an allocation (x, p) that satisfies the assumptions of the lemma. Consider a

sequence of partitions Pn = {tn1 , . . . , t
n
n}, with tn1 = 0, tnn = 1, maxi |t

n
i − tni+1| < K/n for some

constant K independent of n, and such that D ⊆ Pn, where D is the set of discontinuities of

either v or c (without loss of generality, assume that n is large enough to include this finite set).

We now define a sequence of functions cn, vn : T → R+ as follows: for all t < 1, set cn(t) :=

c(tnj ) for t ∈
[

tnj , t
n
j+1

)

, cn(1) := c(tnn−1), as well as, for all t < 1, vn(t) := v(tnj+1) for t ∈
[

tnj , t
n
j+1

)

,

vn(1) := v(tnn).

Further, define the sequence of allocations xn, pn as follows: for all t ∈ T , set xn(t) := x(tnj ),

and pn(t) := p(tnj ) for t ∈
[

tnj , t
n
j+1

)

, j < n− 1 (t ∈
[

tnj , t
n
j+1

]

if j = n.)20

Note that the allocation (xn, pn) is incentive compatible and individually rational for the

seller given the functions (cn, vn) (because the choices of the types in the set Pn are incentive

compatible and individually rational given the original allocation (x, p).) Define

Bn
j :=

∫ 1

tnj

xn(s)[vn(s)− pn(s)]ds.

20Note that the functions vn, cn as well as the allocations xn, pn are right-continuous.
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Because x(tnj+1) ≤ x(t) ≤ x(tnj ) and p(tnj+1) ≤ p(t) ≤ p(tnj ) (by incentive compatibility) for

t ∈ [tnj , t
n
j +1), j < i−1, we can pick these sequences such that, because B(tnj ) ≥ 0 (the lemma’s

hypothesis), it is also the case that also Bn
j ≥ 0 for all j (clearly, Bn

n = 0). Therefore, the

allocation (xn, pn) is individually rational for the buyer given (cn, vn) and further, given Lemma

4, this allocation is veto-incentive compatible in the game with cost and value functions (cn, vn).

Let µn denote the corresponding mechanism. The mechanism µn defines a function xn specifying

the probability of trade given some message t, and a joint distribution µ̃n on T × R+ in case

that there is a trade for each type.21 Let µ̂n denote the product distribution whose marginals

coincide with those of µ̃n. Note that incentive compatibility and veto-incentive compatibility are

restrictions on the marginal distributions only, so that any mechanism inducing the pair xn and

µ̂n also implements (xn, pn). Note that, by construction, (xn, pn) converge (pointwise) to (x, p),

and similarly, (cn, vn) converge pointwise to (c, v). Also, since we can replace the set of prices

R+ by the compact interval [0, v(1)] (because v(1) is an upper bound on the price that can be in

the support of any mechanism that is veto-incentive compatible), a subsequence of the sequence

{µ̂n} (without loss of generality the sequence itself) must converge weakly to some distribution

µ̂. It follows from Theorem 3.2 of Billinsgley (1968) that µ̂ must itself be a product distribution,

and that the marginals of µ̂n converge weakly to the marginals of µ̂. Therefore, for all prices p,

the marginal distribution µ̂n(·|p) converges weakly to µ̂(·|p), and so it follows that, for all p,

∫

T

µ̂(t|p)(v(t)− p)dt ≥ 0,

which is precisely the requirement of veto-incentive compatibility. Therefore, along with x, µ̂ de-

fines a veto-incentive compatible mechanism. (Incentive compatibility and individual rationality

21More precisely, x = µ(·) [1,R+], as defined in Section 2, and the distribution µ̃ is the joint distribution
ν((1, ·), ·), where ν is the conditional distribution defined in Section 2 as well.
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are satisfied by hypothesis, given the limiting allocation (x, p)).

Note that Lemma 2 and 4 immediately imply Proposition 1.

4.1.2 Proof of Theorem 2.1

We shall now show that the payoff set of the veto-incentive compatible program can be

obtained by assuming that:

1. all local incentive compatibility constraints are binding;

2. the highest type of the seller that trades with positive probability has a zero payoff;

3. the lowest type of the seller trades with probability 1, that is x(0) = 1.

Let us refer to this payoff set as ΠV . Note that this set is compact and convex. Both

claims will be established by considering the boundary of ΠV . Because both properties are

preserved under convex combinations, the result follows for the entire set. Also, given (x, p), let

t̄ := sup{t ∈ T : x(t) > 0}.22

Clearly, (0, 0) is an extreme point of this set, and because it is achieved by the allocation

(x, p) = (0, 0), the claims are trivially valid for this point. We further divide this boundary into

ΠV
− := {(πS, πB) ∈ R

2 : πB = max(π1,π2)∈ΠV π2 s.t. π1 ≤ πS} and ΠV
+ := {(πS, πB) ∈ R

2 : πB =

max(π1,π2)∈ΠV π2 s.t. π1 ≥ πS}. As will be clear, ΠV
+ intersects the axis {(πS, 0) : πS ∈ R}, so

that ΠV = co {(0, 0)} ∪ ΠV
+ ∪ΠV

−, where, given any set A, co A denotes the convex hull of A.

Let us now establish three claims for ΠV
+∪ΠV

− simultaneously. If (x, p) achieves π ∈ ΠV
+∪ΠV

−,

then

22Not to be confused with t̄ as defined in (9).
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1. lims↓t π
S(s|t) = πS(t) for all t. Suppose that this is not the case. First, consider the case in

which the payoff is in ΠV
+. Take the supremum over t̂ such that πS

(

t̂
)

> lims↓t π
S
(

s | t̂
)

.

Clearly, t̂ is a point of discontinuity of c (t) and x (t). Consider then the following alternative

allocation (x′, p′), defined by

x′ (t) = x (t) + ε if t ∈ [t̂, t̂+ ε), x′ (t) = x (t) otherwise;

p̄′ (t) = p̄ (t) + εc (t + ε) if t ∈ [t̂, t̂+ ε), p̄′ (t) = p̄ (t) otherwise.

It is straightforward to see that, for small enough ε > 0, this is incentive-compatible,

satisfies B (t) ≥ 0 for all t and strictly improves the buyer’s payoff, while weakly improving

the seller’s payoff. Consider next the case in which the payoff of (x, p) belongs to ΠV
−. Take

the supremum over t̂ such that π
(

t̂
)

> lims↓t π
(

s | t̂
)

. Clearly, t̂ is a point of discontinuity

of c (t). Thus consider the alternative allocation (x′, p′), defined by

x′ (t) = x (t) for all t ∈ [0, 1] ,

p̄′ (t) = p̄ (t)− ε if t ∈ [0, t̂); p̄′ (t) = p̄ (t) otherwise.

It is straightforward to check that for small ε > 0 this allocation is implementable. More-

over, it decreases the seller’s payoff and increases the buyer’s payoff, which contradicts the

assumption that the payoff is in ΠV
−.

2. πS(t̄−) = 0, where t̄ := sup{t ≤ 1 : x(t) > 0} is the highest seller’s type that trades with

positive probability. Suppose towards a contradiction that this is not the case. Consider

first the case in which the payoff is in ΠV
−. Modify the allocation by decreasing p(t) (for

all t such that x(t) > 0) by some (small) ε > 0, contradicting the hypothesis that π ∈ ΠV
−.
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Suppose next that π ∈ ΠV
+. Fix some small η > 0 and let t∗ = sup {t : x (t)− x (t̄−) > η}.

Since the allocation is right-continuous, we must have x (t∗) ≤ x (t̄−) + η. Thus, define

p̂ such that x (t∗) (p (t∗)− c (t∗)) = [x (t̄−) + η] (p̂− c (t∗)), and consider the alternative

allocation

x̂ (t) = x (t̄) + η if t ∈ [t∗, t̄), x̂ (t) = x (t) otherwise;

p̂ (t) = p̂ if if t ∈ [t∗, t̄), p̂ (t) = p (t) otherwise.

The payoff of each seller’s type weakly decreases in this alternative allocation, while the

payoff of the buyer strictly increases (since c is piecewise continuous and inft [v(t)− c(t)] >

0, the allocation remains implementable for small η). If the payoff of the seller remains

constant, we are done. Suppose that the seller’s payoff decreases by α > 0. There exists

ε > 0 such that
∫ t̄

0
εdt = α. Thus, increase all prices by ε, so that the seller’s overall payoff

does not change23. This is incentive compatible and increases the buyer’s payoff. Thus,

since the increase in surplus goes to the buyer, it is enough to show that B (t) ≥ 0, all t.

Note that the variation in the buyer’s ex ante payoff is

∆B (0) =

∫ t̄

0

(∆x (t) (v (t)− c (t))) dt−

∫ t̄

0

(∆p̄ (t)−∆x (t) c (t)) dt

=

∫ t̄

0

(∆x (t) (v (t)− c (t))) dt > 0,

where ∆x (t) := x′ (t)− x (t̄) and ∆p̄ (t) := p̄′ (t)− p̄ (t). Furthermore,

∆x (t) (v (t)− c (t)) + (∆p̄ (t)−∆x (t) c (t)) < 0,

if and only if t < t∗∗ ∈ [t∗, t̄). Thus ∆B (t) ≥ 0 for all t, which completes the argument.

23Notice that the sellers with types [t∗, t̄) are made worse-off, while sellers with types [0, t∗) are made better-off.
Hence, the allocation (0, 0) is still optimal for types in [t̄, 1) when t̄ < 1.
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3. x(0) = 1. Suppose towards a contradiction that x (0) < 1. Since the cost function is

piecewise right-continuous and piecewise C1 we take an interval [0, η] such that (c, v) are

differentiable on that interval. Fix n′ ∈ N such that 1/n′ < η, and consider the following

alternative allocation (xn, p̄n) defined as

xn (t) = x (t) + (1− x (0)) if t ∈ [0, 1
n
), xn (t) = x (t) otherwise;

p̄n (t) = p̄ (t) + c
(

1
n

)

(1− x (0)) if t ∈ [0, η), p̄ (t) = p̄ (t) otherwise.

Notice that there exists m > n′ such that this allocation is implementable (and is also

a Pareto improvement for all n > m). If π ∈ ΠV
+, this is an immediate contradiction.

If instead π ∈ ΠV
− such that πS > 0, let k > 0 be the supremum of the subgradi-

ents of the payoff set at π. Now notice that for each n the payoff of the buyer in-

creases by (1− x (0))
∫ 1

n

0
(v (s)− c(1/n)) ds, while the payoff of the seller increases by

(1− x (0))
∫ 1

n

0
(c (s)− c(1/n)) ds. Thus the ratio of the increase in the payoff of the buyer

and the seller is arbitrarily large as n → ∞, and for n large enough, both payoffs can be

increased at a rate greater than k, a contradiction. If π ∈ ΠV
− and πs = 0, there are two

cases: i) c is constant in a neighborhood of 0; ii) c(t) > c(0) for all t > 0. If we have i)

then one can readily see that for some small n the alternative allocation above increases

the payoff of the buyer while keeping the payoff of the seller constant. If we have ii) then

since c is right-continuous we have πB = 0 and the claim is trivially true.

4.2 Proof of Theorem 3

This theorem is established by dividing the set of extreme points of the relevant payoff set into

three different cases, according to whether this extreme point lies to the “north-east,” “north-

west,” or “south-west” of the payoff set (i.e., according to the signs of the weights on the seller’s
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and buyer’s payoff whose linear combination this extreme point maximizes.) Arguments for one

case require minor modifications to be valid in the other cases.24 For brevity, we only provide

the complete proof for the case of positive weights, that is, we consider extreme points that lie

on the Pareto-frontier.

The proof is divided into two steps. First, it is shown that allocations for which x is a step

function satisfying some properties can be implemented as equilibria of the game. Second, we

show that every vertex of the equilibrium payoff set is the limit of a sequence of such allocations.

We first define a certain class of allocations (x, p).

4.2.1 Regular Allocations

Recall that, for all 0 ≤ t1 < t2 ≤ 1, vt2t1 = E[v(t)|t ∈ [t1, t2)].

Definition 1 The allocation (x, p) is regular if there exists 0 = t0 < t1 < · · · < tK ≤ 1, for some

finite K, such that

1.

x (t) =











xk if t ∈ [tk−1, tk) , k = 1, . . . , K,

0 if t ≥ tK ,

with 1 = x1 > · · · > xK > 0;

2.

p (t) =











pk if t ∈ [tk−1, tk) , k = 1, . . . , K,

0 if t ≥ tK ,

with v (0) < p1 < · · · < pK;

24For instance, in the “south-west” region, the local incentive constraints are binding “downward,” and the
definition of regular allocations must be modified accordingly.
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3. for each k = 1, . . . , K − 1,

xk (pk − c (tk,−)) = xk+1 (pk+1 − c (tk,−)) ,

where tk,− = limt↑tk t (recall that c is right-continuous) and

xK (pK − c (tK−)) ≥ 0;

4. We have

B (0) ≥ 0, B (t1) = · · · = B (tK−2) = 0, and B (tK−1) > 0;

5. Furthermore,

v
tK−1

tK−2
> c(tK−1,−);

6. Finally, πS(0) ≥ v(0)− c(0).

That is, a regular allocation is a step allocation such that local incentive compatibility con-

straints hold at each jump, the contribution to the buyer’s payoff of each interval of types [tk, 1] is

zero except for k = 0, K−1, and positive for t = 0, K−1 (strictly so for t = K−1). Furthermore,

the expected valuation of the buyer over the penultimate interval of types exceeds the cost of

the seller’s highest type in the previous interval, and the seller’s lowest type must guarantee his

security payoff.

A regular allocation need not be an equilibrium allocation in the discrete-time game, because

of the indivisibilities that discrete periods introduce. This indivisibility becomes less and less
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problematic as δ → 1, and we show that we can choose (xδ, pδ) such that

‖(xδ, pδ)‖ → ‖(x, p)‖,

uniformly in t, as δ → 1. The following lemma will be established in the next two subsections.

Lemma 5 Fix a regular allocation (x, p). There exists a sequence of equilibria σδ ∈ E(δ) such

that the corresponding sequence of allocations (xδ, pδ) converges to (x, p) as δ → 1, uniformly in

t ∈ T .

We first turn to the definition of this allocation (xδ, pδ).

4.2.2 The Allocation (xδ, pδ)

Fix some regular allocation (x, p). In what follows, we assume that K > 2.25 Fix δ and

ε < min{p1 − v (0) , v
tK−1

tK−2
− c (tK−1,−)}. Further, pick pδ1, . . . , p

δ
K−2, p̂

δ, p̃δ ∈ R+ such that, for all

k = 1, . . . , K−2, ε/4 < pk−pδk < 3ε/4, as well as ε/4 < vtKtK−2
− p̂δ < 3ε/4 and ε/4 < vtKtK−1

− p̃δ <

3ε/4. Set T δ
1 = 0, and consider the following system in T δ

2 < · · · < T δ
K , β

δ:

δT
δ
k

(

pδk − c (tk,−)
)

= δT
δ
k+1
(

pδk+1 − c (tk,−)
)

, k = 2, . . . , K − 3,

δT
δ
K−2

(

pδK−2 − c (tK−2,−)
)

= δT
δ
K−1

(

βδ
(

p̂δ − c (tK−2,−)
)

+
(

1− βδ
)

δ
(

v
tK−1

tK−2
− c (tK−2,−)

))

,

δT
δ
K−1+1

(

v
tK−1

tK−2
− c (tK−1,−)

)

= δT
δ
K

(

p̃δ − c (tK−1,−)
)

,

δT
δ
K−1βδ

(

p̂δ − c (tK,−)
)

+ δT
δ
K

(

1− βδ
) (

p̃δ − c (tK,−)
)

= xK (pK − c (tK,−)) ,

δT
δ
K−1

∫ tK

tK−2

(

v (s)− p̂δ
)

ds = δT
δ
K

∫ tK

tK−1

(

v (s)− p̃δ
)

ds. (12)

25The proof for K = 2 is very similar, but requires slightly different notations.
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We may assume that this system in δT
δ
2 , . . . , δT

δ
K , βδ has full rank (slightly change the values of

the pδ variables otherwise). By perturbing the values of the pδ variables, it thus follows from the

implicit function theorem that there exists δε < 1 such that for any δ > δε, the values of the pδ

variables can be chosen so that 0 < βδ < 1, T δ
1 , . . . , T

δ
K are integers, and such that

max{ max
k≤K−2

|δT
δ
k − xk|, |β

δδT
δ
K−1 +

(

1− βδ
)

− xK−1|, |β
δδT

δ
K−1 +

(

1− βδ
)

δT
δ
K − xK |} ≤ ε.

Also, given equalities (13) and (14), the sequence βδ converges to β, defined as the solution to

the affine equation

xK−1

[

β
(

vtKtK−2
− c (tK,−)

)

+ (1− β)

(

v
tK−1

tK−2
− c (tK−1,−)

vtKtK−1
− c (tK−1,−)

)

(

vtKtK−1
− c (tK,−)

)

]

= xK (pK − c (tK,−)) .

(13)

Because B (tK−2) = 0, B (tK−1) > 0 and v
tK−1

tK−2
> c (tK−1,−), β must lie in (0, 1), and satisfy

xK−1

[

β + (1− β)

(

v
tK−1

tK−2
− c (tK−1,−)

vtKtK−1
− c (tK−1,−)

)]

= xK . (14)

The values βδ will play the role of a probability in our equilibrium construction.

We now finally define the allocation
(

xδ, pδ
)

as

xδ (t) :=



































δT
δ
k if t ∈ [tk−1, tk) , k = 1, . . . , K = 2,

βδδT
δ
K−1 +

(

1− βδ
)

if t ∈ [tK−2, tK−1) ,

βδδT
δ
K−1 +

(

1− βδ
)

δT
δ
K if t ∈ [tK−1, tK) ,

0 if t ≥ tK ,
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and

pδ (t) :=







































pδk if t ∈ [tk−1, tk) , k = 1, . . . , K = 2,

δ
Tδ
K−1

(

βδpδK−1+δ(1−βδ)v
tK−1
tK−2

)

xδ(t)
if t ∈ [tK−2, tK−1) ,

δ
Tδ
K−1βδpδ

K−1+δT
δ
K (1−βδ)vtKtK−1

xδ(t)
if t ∈ [tK−1, tK) ,

0 if t ≥ tK .

Note that for every k = 1, . . . , K − 2, we have

pδk < pk ≤ vtktk−1
,

where the second inequality follows from the fact that B (0) ≥ 0, B (t1) = · · · = B (tK−2) = 0.

As the last step in the proof of Lemma 5, we show that the allocation
(

xδ, pδ
)

can be imple-

mented in the bargaining game when the discount factor is δ.

4.2.3 The equilibrium σδ of the bargaining game

First, we describe the players’ on-path behavior. Then we turn to the off-path behavior.

In the first period of the game, the seller’s types in [t0, t1) make the offer pδ1 and the buyer

accepts it.

Consider now the types in the interval [tk−1, tk), k = 2, . . . , K−2. In period n = 1, . . . , T δ
k −1,

they make a losing offer equal to v (1). In period T δ
k , the types in [tk−1, tk) make the offer pδk and

the buyer accepts it.

Next, consider the types in [tK−2, tK−1)∪ [tK−1, tK) = [tK−2, tK) . In period n = 1, . . . , T δ
K−1−

1, they make the losing offer v (1). In period T δ
K−1 the types in [tK−2, tK) offer p̂δ. The buyer

accepts the offer p̂δ with probability βδ.

Suppose that the buyer rejects p̂δ. In the following period, period T δ
K−1 + 1, the types in
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[tK−2, tK−1) offer v
tK−1

tK−2
and the buyer accepts the offer. How about the types in [tK−1, tK)? In

period n = T δ
K−1+1, . . . , T δ

K −1, they make the losing offer v (1) . In period T δ
K they offer p̃δ and

the buyer accepts the offer.

Finally, each type t ≥ tK makes the losing offer v (1) in every period.

To see that this behavior is part of an equilibrium, consider all possible deviations in turn.

Suppose that in a certain period n, a type t makes an offer that the buyer is supposed to accept

with probability one. Suppose that the buyer deviates and rejects the offer. Then the seller of

type t keeps making the same offer until the buyer accepts it. On the other hand, the buyer

accepts the serious offer in the first period in which it is made.

If at any point the seller makes an offer greater than v (0) and different from the serious offers

described above, the buyer rejects it. Of course, the buyer accepts any offer smaller than v (0).

It is simple to verify that the strategy profile just described constitutes an equilibrium (or

rather, that there exists a belief system along which this strategy profile is an equilibrium). By

construction, each type t ∈ [tk−1, tk), k = 1, . . . , K − 1, prefers his own strategy to the strategy

of type t′ ∈ [tk, tk+1). Thus, any type t ∈ [0, 1] does not any incentive to mimic the equilibrium

behavior of another type t′. Also, type t does not have any incentive to make offers that are not

used in equilibrium since the buyer will reject them.

Conditional on receiving an offer that has to be accepted with probability one, the buyer’s

expected payoff is weakly positive. Thus, he has an incentive to accept the offer.

Finally, consider the buyer in period T δ
K−1. If he rejects the offer p̂δ, then in the following

period the types in [tK−2, tK−1) will offer v
tK−1

tK−2
. By definition, if the buyer accepts the offer v

tK−1

tK−2
,

his expected payoff is equal to zero. This and equality (12) imply that in period T δ
K−1 the buyer

is indifferent between accepting and rejecting the offer p̂δ.

The off-path behavior can be easily made sequentially rational by assuming that following
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any deviation the buyer assigns probability one to the event that the seller’s type is t = 0. (This

might be seen as an extreme belief revision, but it is convenient, and other possibilities would

do just as well.)

4.2.4 Proof of Theorem 3, Conclusion

The previous subsections have shown that any regular allocation can be achieved as an equi-

librium allocation in the bargaining game as δ → 1. Note that the set of equilibrium payoffs that

can be achieved in the bargaining game is a subset of the set of payoffs spanned by the allocations

described in Theorem 3, because the constraint πS(0) ≥ v(0)−c(0) must hold, as explained before

the theorem. Also, equilibrium allocations must satisfy veto-incentive compatibility. Therefore,

one direction of the Theorem 3 is obvious. The other direction will be established if we can

show that every extreme point of the set of veto-incentive compatible payoffs giving the seller his

security payoff can be approximated arbitrarily closely by regular allocations. This is the content

of Lemma 6. Recall that, for brevity, we restrict ourselves here to the case of extreme points

of the payoff set that lie on the Pareto-frontier. The following is proved in the online appendix

(Appendix A).

Lemma 6 For every extreme point (πS, πB) (on the north-east boundary) of the payoff set that

can be achieved by veto-incentive compatible allocations for which πS(0) ≥ v(0)− c(0), and every

ε > 0, there exists a regular allocation whose payoff is within distance ε of (πS, πB).

This concludes the proof of Theorem 3.
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5 Extensions

5.1 Non-monotonic Values

We have maintained throughout the assumption that both the seller’s cost, and the buyer’s

value are non-decreasing. Of course, there is no loss of generality in assuming that one of these

functions is non-decreasing. So let us assume that types are ordered so that only the cost function

is non-decreasing, and maintain all other assumptions (besides monotonicity). In particular, gains

from trade are bounded away from zero for all t, and, to avoid trivialities, the seller’s highest

cost exceeds the buyer’s average value. Does there exist a similarly tractable characterization of

the veto-incentive compatible program when the value function is not necessarily increasing? In

that case, it is easy to see that B(t) ≥ 0 for all t is no longer a necessary condition, although it

remains a sufficient condition for implementability. This suggests that non-negative correlation

singles out the collection of intervals {[t, 1] : t < 1} as the relevant one for the domains of the

integral constraints B(t). We view it as an important next step to identify what the “right”

collection of intervals is, if any, over which the expected buyer’s payoff must be positive, when

values are not positively correlated, before turning to more general environments with limited

commitment and private information.

In the absence of such a characterization, we might still ask the question: under which con-

ditions is the ex ante efficient (i.e., surplus-maximizing) allocation of the commitment program

also implementable in the veto-incentive program, or even in the bargaining game as frictions

disappear? The answer to this question is surprisingly simple. Recall that the ex ante efficient

mechanism under full commitment takes a very simple form, with (at most) two thresholds t1

and t2, with 0 < t1 ≤ t2 ≤ 1. If t1 = t2, it is trivial to implement the allocation in the game,

and, a fortiori, in the veto-incentive compatible program, so let us assume that t2 > t1. We have
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the following necessary and sufficient condition, which generalizes Proposition 1, at the cost of

being stated in terms of endogenous variables (t1, t2).

Proposition 2 If t2 > t1, the ex ante efficient allocation of the commitment program is imple-

mentable in the bargaining game as δ → 1 if and only if

c(t2) ≤
1

t2 − t1

∫ t2

t1

v (t) .

Proof. Sufficiency follows closely the construction in 4.2.3 and is omitted. Necessity is

established in the online appendix (Appendix B).

In fact, the proof of necessity makes clear that it is equally necessary for veto-incentive

compatibility, so that this condition is also necessary and sufficient for implementability in the

veto-incentive compatible program.

5.2 Payoffs vs. Allocations

Our characterizations of veto-incentive compatibility, as well as limiting equilibrium outcomes

in the bargaining game, were cast in terms of the agents’ expected payoffs, not in terms of the

allocations themselves. For some important outcomes, this makes no difference: the efficient

payoff, the buyer’s highest payoff, for instance, are implemented by a unique allocation. However,

our result does not extend to allocations in general. Not every incentive-compatible allocation

whose payoffs satisfy the conditions of the characterization need be implementable. What we have

characterized is the projection of the implementable allocations onto the expected payoffs. We

have no direct characterization in terms of allocation only. For instance, not every allocation

that gives the seller’s lowest type a profit πS(0) ≥ v(0) − c(0) need be implementable. Indeed,

suppose that there are three equiprobable types of seller (and buyer), and we consider parameters
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such that the highest cost, c3, is strictly lower than the expected value of the lower two values,

(v1 + v2)/2. Further, consider an incentive compatible allocation in which the buyer’s expected

payoff is zero, the highest seller’s type does not trade, but the second highest does; this seller’s

intermediate type gets a strictly positive profit, and the seller’s lowest type gets a payoff exceeding

v(0)− c(0), so that, by our results, the resulting expected payoffs are equilibrium payoffs in the

bargaining game when frictions are sufficiently small.26

Yet this specific allocation, which requires the seller’s high type not to trade, cannot be

implemented in the bargaining game. To see this, note that the buyer will never accept an offer

that gives him a strictly negative payoff, and therefore, because the buyer’s expected payoff is

zero, it must be that his expected payoff is also zero, conditional on any offer that is submitted

with positive probability, after any history. By the martingale property of beliefs, there is a

sequence of equilibrium offers along which the buyer’s expected value, conditional on these offers,

is non-decreasing, and therefore, at least as large as (v1 + v2)/2 > c3. This sequence of offers

must involve offers accepted with positive probability, for otherwise the seller’s intermediate type

would not be willing to follow it. By mimicking this sequence of offers, the seller’s highest type

guarantees a strictly positive profit, a contradiction.

5.3 Limited Commitment on the Seller’s Side

Veto-incentive compatibility weakens the commitment assumption made in the full commit-

ment program on the buyer’s side. As discussed, this is a relaxation that is relevant for many

actual market institutions. Furthermore, our characterization of the equilibrium payoffs in the

bargaining game suggests that this is the “right” relaxation, namely, the absence of commitment

26Such an example is easy to find with a mathematical software: for instance, it occurs for the parameters
c1 = 1, c2 = 5970/2142, c3 = 175/51, and v1 = 134/65, v2 = 2458/509, v3 = 5. The allocation is x1 = 1, x2 =
1309475796/1359864155, x3 = 0, p1 = 926734382/271972831, p2 = 898659860/271972831, p3 = 0.
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on either side, as captured by the bargaining game, appears to impose no further constraints on

achievable payoffs, aside from the security payoff that the seller must secure.27

It is then natural to ask whether one could derive results that mirror those of Section 3.2 in

which the seller’s commitment, instead of, or in addition to, the buyer’s commitment is relaxed.

While we shall not attempt to obtain a characterization for each possible case, we discuss here

the relationship between the different sets of allocations and payoffs. As we shall see, limited

commitment on the seller’s side is arguably less of a problem than on the buyer’s side.

Unlike the buyer, the seller gets an opportunity to influence the terms at which the trade

would take place. Therefore, there are two possible ways of modeling the absence of commitment

on the seller’s side. A mechanism is ex post individually rational for the seller if the price p that

is offered to the buyer is always higher than the cost of the seller’s reported type t:

∀t ∈ T :

∫

[0,c(t))

µ(t)[1, dp] = 0.

This guarantees that the seller never loses from the mechanism, but it does not give him the

authority to actually prevent the trade. Alternatively, we might endow the seller with the ability

to block the trade given the realized price. This notion, in line with Forges’ original definition of

veto-incentive compatibility, is more demanding than ex post individual rationality: the ability

to block the trade affects the seller’s incentives to report his type truthfully, as the payoff from

making a given report must include the option value from blocking the trade if the realized price

happens to be below the seller’s actual cost. To be more formal, we re-define the payoff of the

27Of course, in bargaining, the seller is not formally allowed to withdraw an offer that he makes, but why would
he? Acceptance by the buyer reveals no information, so a seller that anticipates withdrawing an offer might as
well not submit it.

51



type t seller that reports s, from a given mechanism µ, as

π̂S(s|t) =

∫

R+

1{p≥c(t)}(p− c(t))µ(s)[1, dp].

A mechanism is seller veto-incentive compatible if it is incentive compatible given the payoff π̂,

and the allocation (x, p) is implementable in the seller’s veto-incentive compatible program if

there is a mechanism that is seller veto-incentive compatible and induces the allocation (x, p),

according to eqns. (1)–(2), taking into account that trade does not take place for prices below

c(t). To distinguish this notion from veto-incentive compatibility as defined in Section 2, the

latter will now be referred to as buyer veto-incentive compatibility.

Does seller veto-incentive compatibility, or even ex post individual rationality restrict the set

of implementable allocations, or the set of achievable payoff vectors? In a nutshell, the answer

is no, as far as payoffs are concerned, and sometimes, as far as allocations are concerned, but

only if it comes in addition to buyer veto-incentive compatibility. More precisely, we have the

following proposition.

Proposition 3

i. The set of implementable allocations (and thus, of achievable payoff vectors) in the full

commitment program remains unchanged if seller veto-incentive compatibility is imposed.

ii. The set of implementable allocations (and thus, of achievable payoff vectors) in the buyer

veto-incentive compatible program remains unchanged if seller ex post individual rationality

is imposed.

iii. The set of achievable payoff vectors in the buyer veto-incentive compatible program remains

unchanged if seller veto-incentive compatibility is imposed.
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Because seller veto-incentive compatibility implies seller ex post individual rationality, we have

omitted some relationships that follow from the proposition. For instance, from (i), it follows

that seller ex post individual rationality does not restrict the set of implementable allocations in

the full commitment program. Furthermore, all remaining inclusions are strict: that is, for some

parameters, the set of implementable allocations in the buyer veto-incentive compatible program

is strictly reduced if seller veto-incentive compatibility is imposed, and, as we know, the set of

implementable allocations in the veto-incentive compatible program is strictly contained in the

set of allocations of the full commitment program, for some parameters.

The proofs of the claims in Proposition 3, some of which follow arguments that are similar to

the other proofs in the paper, are sketched in the online appendix (Appendix D).28 Additional

details, as well as examples establishing the strict inequalities, are available from the authors.
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Online Appendix: Omitted Proofs (Not for Publication)

Appendix A: Proof of Lemma 6

As mentioned, we restrict ourselves to the case of extreme points that lie on the Pareto-

frontier here. Considering points on the “north-west” and “south-west” of the relevant payoff

set require relatively straightforward modifications.

Lemma 7 Every extreme point (πS, πB) of the payoff set that can be achieved by veto-incentive

compatible allocations (x, p) ∈ ΠV
+ for which πS(0) > v(0)− c(0) can be approached by a regular

allocation.

Proof. Consider an allocation (x, p) satisfying the assumptions of the Lemma. This alloca-

tion maximizes the the weighted sum of the buyer and the seller’s payoff. For future reference,

let β ∈ (0, 1) be the seller’s weight.

Define t̂ := sup {t : x(t) > 0}. It is straightforward to construct an allocation (x′, p′) such that:

a) t̂ = sup {t : x′(t) > 0} ; b) x(t̂−) > 0; c) p′ << v. Since the convex combination of feasible

allocations is also a feasible allocation, take λ ∈ (0, 1) and define (xλ, pλ) := λ (x, p)+(1−λ) (x′, p′)

satisfying ‖(xλ, pλ)− (x, p)‖ < ε
2
. Notice that for the allocation (xλ, pλ) we have Bλ(t) > 0 for

all t < t̂. Furthermore, notice that since (xλ, pλ) and (c, v) are right-continuous, the assumptions

b) and c) imply that there exists t2 < t̂ such that pλ (s) < v(t2) for all t ∈ [t2, t̂). Therefore:

Bλ (t2) =

∫ t̂

t2

xλ (s) (v(s)− pλ (s)) ds = ϑ > 0.

Next, we approach the allocation (xλ, pλ) with a step allocation.
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- Step 1: For every n ∈ Nwe consider a mesh of [0, t̂),
{

In
j

}Mn

j=1
:=
{

[tn1,1, t
n
2,1), . . . , [t

n
1,Mn

, tn2,Mn
)
}

such that

i)
∑

j

max
∣

∣

∣
supt∈In

j
xn (t)− inft′∈In

j
xn (t

′)
∣

∣

∣
<
(

1
n

)

;

ii) xn (t) = xn (t
′) for all t ∈ In

j and xn

(

tn2,j−
)

= xλ

(

tn2,j−
)

for every tn2,j ;

iii) pn (t) = pn (t
′) for all t ∈ In

j ; pn
(

tn2,Mn−

)

= p
(

tn2,Mn−

)

and for all j < Mn we define

pn
(

tn2,j−
)

by

pn
(

tn2,j−
) (

xn

(

tn2,j−
)

− c
(

tn2,j−
))

= pn
(

tn2,j+1−

) (

xn

(

tn2,j+1−

)

− c
(

tn2,j−
))

;

iv) All discontinuity points of c belong to the boundaries of the partition.

Notice that for every t we have

p̄n(t) = xn(t)c(t) +

∫ 1

t

xn(s)dc(s).

Notice that by construction xn (t) → x (t) uniformly. Furthermore,

|p̄n(t)− p̄ (t)|

≤ |xn(t)c(t)− x(t)c(t)| +

∫ 1

t

|xn(s)− x(t)| dc(s).

Hence, using iv) we conclude that p̄n (t) → p̄ (t) uniformly. Furthermore, there exists n1

such that n > n1 implies Bn (t1) ≥
ϑ
2
. Hence, the uniform convergence of e p̄n and xn (t)

guarantee that there exists n2 > n1 such that ‖(xn, pn)− (xλ, pλ)‖ < ε
2
and Bn (t) > 0 for

all t < t̂.
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Step 2: Notice that the allocation (xn, pn) is a step function allocation and hence there are

a finite partition of the types
{

[tn1,1, t
n
2,1), . . . , [t

n
1,Mn

, tn2,Mn
)
}

such that all types t ∈ [tn1,j , t
n
2,j)

trade with the same probability. Hence, consider an artificial game with finite types in

which all types t ∈ [tn1,j , t
n
2,j) have the same cost c(tn2,j−), the same value

(
∫

[tn
1,j

,tn
2,j

) v(s)ds

tn2,j−tn1,j

)

and trade with the same probability. Furthermore, if tn2,j < 1 attribute the cost c(1)

and the value

( ∫

[tn
2,j

,1)
v(s)ds

1−tn2,j

)

to all types t ∈ [tn2,j, 1). In this finite game, consider the

allocation that maximizes the weighted sum of the buyer’s payoff and the seller’s payoff

(weight β to the seller) such that all types t ∈ [tn1,j, t
n
2,j),j ≤ Mn and all types t ∈ [tn2,j , 1)

trade with the same probability. This is a finite dimensional compact problem. Hence, it

admits a solution. Since (xn, pn) is feasible, the solution leads to a weakly higher value for

the objective function. It is straightforward to show that any solution to this problem is

a regular allocation and, from Theorem 2.1, we know that all downward constraints are

binding and the last type of the seller who trades with positive probability obtains zero

payoff. This completes the proof.

Appendix B: Proof of Proposition 2

Recall that, in the ex ante efficient allocation, the seller’s expected transfers p̄ (t) are given

by

p̄ (t) =























(1− x) c (t1) + xc (t2) t ∈ [0, t1) ,

xc (t2) t ∈ [t1, t2] ,

0 t > t2.
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Define the set T̂ as

T̂ := {t ∈ [0, t2] : v (t
′) ≤ v (t) for every t′ ∈ [0, t2]} .

Throughout we assume that the set T̂ is nonempty (this is not guaranteed by our assumptions,

and minor adjustments are necessary otherwise). To ease notation, we let v̂ denote the value of

the function v over the set T̂ .

Suppose that c (t2) > vt2t1 . We want to show that it is impossible to construct a collection of

distributions (µ (·|t))t∈[0,t2] over the interval [0, v̂] which satisfy the following three conditions:

i) for every t ∈ [0, t2],
∫ v̂

0

dµ (p|t) = x (t) , (15)

ii) for every t ∈ [0, t2],
∫ v̂

0

pdµ (p|t) = p̄ (t) , (16)

iii) for all p ∈ [0, v̂],
∫ t2

0

(v (t)− p) dµ (p|t) = 0.

(Recall that under the ex ante efficient mechanism the buyer’s expected payoff is equal to zero).

We approximate the function v by a sequence of step functions vn, n ∈ N. In particular, each

vn satisfies

i) for every t ∈ [0, t2],

v (t) ≤ vn (t) ≤ v̂,

ii) for every t ∈ [0, 1],

0 ≤ vn (t)− v (t) ≤
1

n
,
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iii) if t and t′ belong to the same step of vn, then x (t) = x (t′).

Finally, for each n ∈ N, we let In ⊂ [0, t2] denote the union of the intervals over which the

function vn takes the value v̂.

Fix n ∈ N. For each p < v̂ we have

∫ t2

0

(vn (t)− p) dµ (p|t) = εn (p) ,

for some εn (p) ≥ 0. After dividing both sides by v̂ − p and rearranging terms, we have

∫

t∈In
dµ (p|t) +

∫

t∈[0,t2]\In

(

1−
v̂ − vn (t)

v̂ − p

)

dµ (p|t) =
εn (p)

v̂ − p
≥ 0.

We integrate the two sides of the equality over p, and get

zn :=

∫

t∈In

∫ v̂

0

dµ (p|t) dt+

∫

t∈[0,t2]\In

∫ v̂

0

(

1−
v̂ − vn (t)

v̂ − p

)

dµ (p|t) dt ≥ 0.

For each t ∈ [0, t2] \I
n, let µ̄ (·|t) denote the distribution that assigns probability x (t) to the offer

p̄ (t) /x (t) (with probability 1 − x (t) no offer is made). Notice that the function 1
p−v̂

is concave

in p. This, together with conditions (15) and (16), implies that, for each n ∈ N,

z̄n :=

∫

t∈In

∫ v̂

0

dµ̄ (p|t) dt+

∫

t∈[0,1]\In

∫ v̂

0

(

1−
v̂ − vn (t)

v̂ − p

)

dµ̄ (p|t) dt ≥ tzn ≥ 0. (17)

We take the limit of z̄n as n goes to infinity, so that

z̄ := limn→∞ z̄n = t1 + (t2 − t1) x−
∫ t1
0 (v̂−v(t))dt

v̂−(1−x)c(t1)−xc(t2)
− x

∫ t2
t1

(v̂−v(t))dt

v̂−c(t2)
=

t1(vt10 −(1−x)c(t1)−xc(t2))
v̂−(1−x)c(t1)−xc(t2)

−
x(t2−t1)(c(t2)−v

t2
t1
)

v̂−c(t2)
<

t1(vt10 −(1−x)c(t1)−xc(t2))−x(t2−t1)(c(t2)−v
t2
t1
)

v̂−(1−x)c(t1)−xc(t2)
= 0,
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where the inequality follows from the fact that c (t2) > vt2t1 , and the last equality follows from the

definition of x in equation (6). However, z̄ being strictly negative contradicts the fact that it is

the limit of a sequence of nonnegative numbers (see condition (17)).

Appendix C: A Sufficient Condition for the Efficient Mechanism to be

Implemented in the Bargaining Game

Recall that Y : [0, 1] → R is defined as

Y (t) :=

∫ t

0

(v (s)− c (t)) ds =

∫ t

0

(v (s)− c (s)− sc′ (s)) ds.

Our assumptions imply that, as mentioned, Y (0) = 0, Y ′ (0) > 0 and Y (1) < 0. Let t denote

the smallest local maximizer of the function Y . Also, let t̄ denote the smallest strictly positive

root of Y . For any t let µ (t) denote the mechanism under which the types below t trade with

probability one at the price c (t) and the types above t do not trade. Notice that if Y (t) ≥ 0,

then the mechanism µ (t) is incentive compatible and individually rational.

Consider the efficient mechanism under full commitment. We know that there exist 0 < t1 ≤

t2 ≤ 1 such that the seller’s types in [0, t1) trade with probability 1, while the types in [t1, t2]

trade with probability x (t1, t2) ∈ [0, 1) (all other types of the seller do not trade). Recall that

the buyer’s individual rationality constraint holds with equality. Thus, we have

0 =
∫ t1

0
(v (s)− c (t1)) ds+ x

(

t1c (t1) +
∫ t2

t1
v (s) ds− t2c (t2)

)

=

Y (t1) + x
∫ t2

t1
(v (s)− c (s)− sc′ (s)) ds = Y (t1) + x (Y (t2)− Y (t1)) .
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Therefore, we can express x (t1, t2) as

x (t1, t2) =
Y (t1)

Y (t1)− Y (t2)
.

Consider the case in which t2 > t1, i.e., there is a set of types who trade with a probability

larger than zero but smaller than one. First, we must have Y (t2) − Y (t1) < 0, otherwise we

may increase x and improve efficiency. This immediately implies Y (t1) > 0. Second, under the

optimal mechanism Y (t2) < 0. In fact, if Y (t2) ≥ 0, it is possible to implement the mechanism

µ (t2), which is more efficient than the original one. In particular, this implies that t2 > t̄.

Finally, we must have t1 ≥ t. Suppose that t1 < t. Fix t2 of the original mechanism and

choose t′1 ∈ (t1, t]. Consider the mechanism under which the types in [0, t′1) trade with probability

1 while the types in [t′1, t2] trade with probability

x (t′1, t2) =
Y (t′1)

Y (t′1)− Y (t2)
>

Y (t1)

Y (t1)− Y (t2)
= x (t1, t2) ,

where the inequality follows from Y (t′1) > Y (t1) and Y (t2) < 0. Of course, the new mechanism is

more efficient than the original one since the types in [t1, t2] trade with a larger probability while

the types outside this interval trade with the same probability as under the original mechanism.

We summarize our results:

Fact 5 Let t1 and t2 denote the endpoints of the first two steps of the optimal mechanism. Then

t1 ≥ t, and t2 ≥ t̄.

We are now ready to provide a sufficient condition to implement the efficient mechanism in

the bargaining game (when the players are sufficiently patient).
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Condition 6 For any t ≥ t̄
∫ t

t

(v (s)− c (t)) ds ≥ 0.

We now explain why the above condition is sufficient. Fix 0 < t̃ ≤ 1, and consider the

function ϕ :
[

0, t̃
]

→ R given by

ϕ (t) :=

∫ t̃

t

(

v (s)− c
(

t̃
))

ds.

Under our assumptions, if ϕ (t′) ≥ 0 for some t′, then ϕ (t) > 0 for every t ∈
(

t′, t̃
)

. Recall that

the function v is increasing. Let t′′ denote the value in
[

0, t̃
]

such that v (t′′) = c
(

t̃
)

(let t′′ = t̃

if v
(

t̃
)

< c
(

t̃
)

). The function ϕ is increasing [0, t′′]. By definition, ϕ is positive above t′′.

Therefore, fix t2 ≥ t̄. Our condition guarantees that for each t1 ∈ [t, t2],

∫ t2

t1

(v (s)− c (t2)) ds ≥ 0,

which implies the result, by Proposition 1.

Appendix D: Proof of Proposition 3 (Sketch)

This appendix sketches the proofs of the two harder statements in Proposition 3. We first

show that the set of allocations in the buyer veto-incentive compatible program is the same

whether or not one imposes ex post seller individual rationality. We then show that, as far as

payoffs are concerned, the latter requirement can even be strengthened to seller veto-incentive

compatibility. In both cases, for simplicity, we restrict attention to finite types. The extension

to our set-up with a continuum of types follows by standard limiting arguments.

Lemma 8 Assume that c and v are step functions with n steps such that c1 < c2 < · · · < cN ,
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and (x, p) is an allocation that is implementable in the veto-incentive compatible program. Then

there exists a measure µ which induce this allocation such that, for all t ∈ T , we have

∫

[0,c(t))

µ (t) [1, dp] = 0.

Proof. Since (c, v) are step functions we can consider the model with N types in which the

probability of each type is qi. We write {µi}
N

i=1 for the distribution of offers faced by type i.

Step 1: We divide the type space into 3 subsets:

T1 := {i ∈ {1, . . . , N} : pi > vi} ,

T2 := {i ∈ {1, . . . , N} : pi < vi} ,

T3 := {i ∈ {1, . . . , N} : pi = vi} .

Step 2: For k ≤ j, define

Lj
k :=

j
∑

i=k

qi (xi (vi − pi)) .

Step 3: Notice that LN
0 = B (0) ≥ 0, and let J∗ be the lowest type i such that Li

0 ≥ 0.

Here we show how to construct an allocation satisfying the properties above for the special case

that J∗ = N > 1. The general proof considers a partition of the type space {1, . . . , i1}, {i1 +

1, . . . , i2}, . . . , {iK + 1, . . . , N} and applies this procedure to each set separately.

Step 4: We will present an algorithm which delivers the desired result.

Step 4.1: Let k1 be the smallest element in T2.

There are 2 cases to consider:

64



Case 1:

q1x1 (v1 − p1) + qk1xk1 (vk1 − pk1) < 0.

Case 2:

q1x1 (v1 − p1) + qk1xk1 (vk1 − pk1) ≥ 0.

Case 1: Notice that since k1 > 1, we have pk1 ≥ p1. From type k1’s individual rationality

constraint, we have pk1 ≥ ck1 . Also, there exists λ ∈ (0, 1) such that

λq1x1 (v1 − p1) + qk1xk1 (vk1 − pk1) = 0. (18)

Next, notice that

p1 = αpk1 + (1− α) v1, (19)

for some α ∈ (0, 1]. Thus, applying (19) into (18) we have

0 = λq1x1 (1− α) (v1 − v1) + λq1x1α (v1 − pk1) + qk1xk1 (vk1 − pk1) . (20)

Next, we use (20) to show that x = x1 + x̂1, where

x1
i :=























λx1 if i = 1,

xk1 if i = k1,

0 otherwise,

and x̂1 := x− x1 ≥ 0. For the allocation (x1, p), we construct a measure {µ1
i }

N

i=1 such that:

a.
(∫

dµ1,
∫

pdµ1
)

= (x1, p);

b. If x1
i > 0 then µ1

i [0, ci) = 0.
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For that, we define µ1
i := 0 if i /∈ {1, k1} and

µ1
1 (p̃) :=























λx1α if p̃ = pk1

λx1 (1− α) if p̃ = v1

0 otherwise

µ1
k1
(p̃) :=











xk1 if p̃ = pk1,

0 otherwise.

Case 2: There exists (ζ, γ) ∈ (0, 1]× (0, 1] such that

p1 = ζpk1 + (1− ζ) v1,

0 = q1x1 (1− ζ) (v1 − v1) + q1x1ζ (v1 − pk1) + γqk1xk1 (vk1 − pk1) .

Thus, we define

x1
i :=























x1 if i = 1,

γxk1 if i = k1,

0 otherwise,

and x̂1 := x−x1 ≥ 0. For the allocation (x1, p), we construct measures {µ1
i }

N

i=1 by setting µ1
i := 0

if i /∈ {1, k1} and

µ1
1 (p̃) :=























x1ζ if p̃ = pk1

x1 (1− ζ) if p = v1

0 otherwise

µ1
k1
(p̃) =











γxk1 if p̃ = pk1 ,

0 otherwise.

Step 4.2: Assume that x =
∑M

i=1 x
i + x̂M . There are two possibilities:

Case i.
{

i ∈ {1, . . . , N} : x̂M
i > 0

}

∩ T1 6= ∅.

Case ii.
{

i ∈ {1, . . . , N} : x̂M
i > 0

}

⊆ T2 ∪ T3.
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Assume that x̂M−1
i is such that

∑N

i=1 qi
(

x̂M−1
i (vi − pi)

)

≥ 0 and
∑J

i=1 qi
(

x̂M−1
i (vi − pi)

)

< 0

if J < N . We claim:

Claim 7 If Step 4.1 is applied to x̂M−1
i , x̂M−1

i = xM
i + x̂M

i with
{

i ∈ {1, . . . , N} : x̂M
i > 0

}

∩

T1 6= ∅, then
∑N

i=1 qi
(

x̂M
i (vi − pi)

)

≥ 0 and
∑J

i=1 qi
(

x̂M
i (vi − pi)

)

< 0 if J < N .

Proof: The first conclusion follows since
∑N

i=1 qi
(

x̂M−1
i (vi − pi)

)

=
∑N

i=1 qi
(

x̂M
i (vi − pi)

)

. For

the second, let kM−1 be the largest element of
{

i ∈ {1, . . . , N} : x̂M−1
i > 0

}

∩ T2. There are two

possibilities:

a. J < kM−1 ≤ N . In this case, the result is immediate.

b. kM−1 ≤ J < N . In this case,

0 >
∑

i≤J

qi
(

x̂M−1
i (vi − pi)

)

=
∑

i≤J

qi
(

x̂M−1
i (vi − pi)

)

+
∑

i≤N

qi
((

x̂M
i − x̂M−1

i

)

(vi − pi)
)

=
∑

i≤J

qi
(

x̂M
i (vi − pi)

)

,

where we used the fact that kM−1 ≤ J implies

0 =
∑

i≤N

qi
((

x̂M
i − x̂M−1

i

)

(vi − pi)
)

=
∑

i≤J

qi
((

x̂M
i − x̂M−1

i

)

(vi − pi)
)

.

�

From Claim 7, we can apply Step 4.1 into x̂M
i to obtain xM+1 and x̂M+1 and

{

µM+1
i

}N

i=1

such that:

a’.
(∫

dµM+1,
∫

pdµM+1
)

= (xM+1, p);
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b’. If xM+1
i > 0 then µM+1

i [0, ci) = 0.

Notice that this procedure can take (at most) N−1 rounds. In order to complete the Lemma

we move to Case ii.

Case ii: In this case, define
{

µM+1
i

}N

i=1
by:

µM+1
i (p̃) :=











x̂M
i if p̃ = pi

0 otherwise.

Step 5: Assume the algorithm described in Step 4.1 and Step 4.2 was applied to the

allocation x such that x =

K
∑

j=1

xj + x̂k. Thus it is straightforward to verify that the measure

{µi}
N

i=1 defined by µi (p̃) :=
K+1
∑

j=1

µj
i (p̃) is such that (x, p) =

(∫

dµ,
∫

pdµ
)

and µi[0, ci) = 0. This

completes the proof.

We now turn to the other nontrivial claim: seller veto-incentive compatibility does not restrict

the set of payoffs that can be achieved in the buyer veto-incentive compatible program. Here as

well, attention is restricted to finite types.

Lemma 9 Assume that the type space is finite and let
(

πB, πS
)

be a vertex of the payoff frontier

achieved in the (buyer) veto-incentive compatible program. There exists a seller veto-incentive

compatible measure µ = {µi}
N

i=1 that achieves this payoff.

Proof. Assume that there are N types.29 It can be shown that if
(

πB, πS
)

is a vertex of the

payoff frontier then it achieved by an allocation (x, p) for which there exists a partition of the

type space: {Pj}
K

j=1 with P1 = {1, . . . , i1} and Pj = {ij−1 + 1, . . . , ij}, with iK ≥ 1 such that:30

29For simplicity of exposition we assume that all types trade with positive probability.
30A proof is available upon request.
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i. If j < K, then if i, i′ ∈ Pj we have pi = pi′ = E [v | Pj].

ii. If j = K, then we have either a. or b. below:

a. (pi, xi) = (pN , xN) for all i ∈ PK ;

b. PK = I1 ∪ I2 where I1 = {ik−1 + 1, . . . , il} and I2 = {il + 1, . . . , N} with ik−1 ≤

il < N is such that (pi, xi) = (p′, x′) if i ∈ I1 and (pi, xi) = (p′′, x′′) if i ∈ I2 with

cil ≤ E [v | i ∈ I1] and p′ < p′′.

Here, we prove the more challenging case b.

Step 1: Defining µi for i /∈ PK by:

µi (p̃) :=











xi if p̃ = pi,

0 otherwise.

Step 2: To define µi for i ∈ PK , there are two cases to consider:

Case 1: p′ ≤ E [v | i ∈ I1].

In this case we let

µi (p̃) :=











x′ if p̃ = p′ and i ∈ I1

0 if p̃ 6= p′ and i ∈ I1

µi (p̃) =











x′′ if p̃ = p′′ and i ∈ I2,

0 if p̃ 6= p′′ and i ∈ I2.

It is straightforward to check that µ is veto-incentive compatible for the seller.

Case 2: p′ > E [v | i ∈ I1].

In this case, notice that since the allocation is incentive compatible we must have

Bik−1+1 =
∑

i≥ik−1+1

qixi (vi − pi) ≥ 0, (21)
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Furthermore, because p′ ∈ (E [v | i ∈ I1] , p
′′), there exists α ∈ (0, 1) such that

p′ = αE [v | i ∈ I1] + (1− α) p′′. (22)

Thus, notice that from (21) and (22),

0 ≤
∑

i∈I1

qixi (vi − pi) +
∑

i∈I2

qixi (vi − p′′)

=
∑

i∈I1

αqixi (vi − E [v | i ∈ I1])

+
∑

i∈I1

(1− α) qixi (vi − p′′) +
∑

i∈I2

qixi (vi − p′′) .

Thus,
∑

i∈I1
(1− α) qixi (vi − p′′) +

∑

i∈I2
qixi (vi − p′′) = Bik−1+1 ≥ 0.

Therefore, we define µi by

µi (p̃) :=























αx′ if p̃ = E [v | i ∈ I1] and i ∈ I1

(1− α) x′ if p̃ = p′′ and i ∈ I1

0 if p̃ /∈ {p′, p′′} and i ∈ I1

µi (p̃) :=











x′′ if p̃ = p′′ and i ∈ I2,

0 if p̃ 6= p′′ and i ∈ I2.

It is straightforward to verify that the allocation constructed is veto-incentive compatible for

the seller. This completes the proof.
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