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Abstract

This paper considers semiparametric estimation of a nonstationary transformation

model with panel data. While nonstationarity is a common phenomenon in applied

research, one of the drawbacks of most existing semiparametric procedures is the re-

quirement of stationarity assumption. In this paper, a new semiparametric estimator

is proposed under a symmetry condition, allowing for nonstationarity of the error

term. Under some mild regularity conditions, the proposed estimator is consistent

and asymptotically normal. A simulation study illustrates its usefulness.

Keywords: Panel Data; Transformation Model; Nonstationarity; Fixed-effects model; Max-

imum Rank Correlation Estimator.
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1 Introduction

In this paper we consider semiparametric estimation of a nonstationary transformation

model with panel data. The transformation model is in the following form:

h (y) = x
0
β + ² (1)

where h(.) is a strictly increasing function which is unknown, y is an observed dependent

variable, x is an observed random vector, β is a vector of constant parameters that is
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conformable with x, ² is an unobservable random variable. h(.) is assumed to be strictly

increasing to insure that (1) uniquely determines y as a function of x and ². In applied

econometrics, models of the form of (1) are used frequently for the analysis of duration data

which include the proportional hazards model, the accelerated failure time model, and the

Box-Cox regression model. A large literature has focused on this linear transformation

model. But most researcher have concentrated on the cross-sectional version of the model

h (yi) = x
0
iβ + ²i (i = 1, · · · , n; ) (2)

Since h is unspecified (2), β is identifiable and estimable only up to scale. Several

semiparametric estimators are available and can be used to estimate β (see, for example,

Ichimura,1993; Horowitz and Hardle,1996; Han,1987; Powell et.al (1989)).

This paper considers the individual fixed-effects panel data form model

h (yit) = x
0
itβ + αi + ²it (i = 1, · · · , n; t = 1, · · · , T ) (3)

where α is a fixed-effect, which may be correlated with other regressors in an arbitrary way,

the aim of this paper is to estimate the homogeneous coefficient β. Similar to the cross-

sectional case, β is only estimable up to scale. We only consider the case with two periods,

and extension to general cases is straightforward. Under the assumption of stationarity

that the marginal distributions of εit are the same over time for each individual, Abrevaya

(1999) proposed the “ leapfrog” estimator for β; he established that the resulting estimator

is
√
n-consistent and asymptotically normal.

In applied economics, however, the stationarity is often violated, and nonstationarity

is common in practice. So the “leapfrog” estimator is not applicable in these cases. Under

a symmetry condition, we propose a semiparametric estimator for β, but allowing general

forms of nonstationarity.

The remainder of the paper is organized as follows: the estimator is introduced in

section 2. Section 3 introduces the large sample properties of the estimator. In Section 4,

we report some simulation results. Section 5 concludes.

2 The Estimator

Recall the two-period panel data model subject to a monotone transformation

h (yit) = x
0
itβ + αi + ²it (i = 1, · · · , n; t = 1, 2) (4)

We first briefly discuss the “leapfrog” estimator proposed by Abrevaya (1999) to motivate

our estimator.
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The basic idea behind Abrevaya’s estimator is to compare dependent variables across

different observational units indexed by i and j (with i 6= j) in the same time period,

h(yit)− h(yjt) = (xit − xjt)0β + (αi − αj) + (²it − ²jt). (5)

If (²i1−²j1) and (²i2−²j2) have the same distribution (conditional on (xi1, xj1, xi2, xj2,αi,αj)),
Abrevaya (1999) observed the following rank condition

∆x0iβ > ∆x0jβ ⇔ Pr(yi2 > yj2|xi1, xj1, xi2, xj2,αi,αj) > Pr(yi1 > yj1|xi1, xj1, xi2, xj2,αi,αj)
(6)

He then further proposed the “leapfrog” estimator by maximizing

Sn(b) =
1

n(n− 1)
X
i6=j
sign((∆xi −∆xj)

0b)(1(yi2 > yj2)− 1(yi1 > yj1))

However, Abrevaya’s estimator relies on the stationarity condition that (εi1, εj1) and

(εi2, εj2) have the same conditional marginal distribution. In applied economics, the sta-

tionarity assumption is usually not satisfied. In order to accommodate possible nonsta-

tionarity, the idea for our proposed estimator is to compare dependent variables between

different time period across different observational units; notice that

h (yi1)− h(yj2) = αi − αj + (xi1 − xj2)0β + ²i1 − ²j2 (7)

and

h (yi2)− h(yj1) = αi − αj + (xi2 − xj1)0β + ²i2 − ²j1
Thus

yi1 > yj2 ⇐⇒ αi − αj + (xi1 − xj2)0β + ²i1 − ²j2 > 0.

and

yi2 > yj1 ⇐⇒ αi − αj + (xi2 − xj1)0β + ²i2 − ²j1 > 0

Hence

Pr(yi1 > yj2|xi1, xj1, xi2, xj2,αi,αj) (8)

= Pr(²j2 − ²i1 < αi − αj + (xi1 − xj2)0β|xi1, xj1, xi2, xj2,αi,αj).

and

Pr(yi2 > yj1|xi1, xj1, xi2, xj2,αi,αj) (9)

= Pr(²j1 − ²i2 < αi − αj + (xi2 − xj1)0β|xi1, xj1, xi2, xj2,αi,αj)

Under symmetry restriction on the error terms, we can easily deduce that ²j2− ²i1 has the
distribution of ²i2−²j1, which, in turn, has the same distribution as εj1−εi2, all conditional
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on xi1, xj1, xi2, xj2,αi,αj. Consequently, with symmetry condition, if the common marginal

density of ( ²j2− ²i1) and (²j1− ²i2) is positive everywhere along the real line. Considering
(8) and (9), we have the following rank condition

Pr(yi1 > yj2|xi1, xj1, xi2, xj2,αi,αj) > Pr(yi2 > yj1|xi1, xj1, xi2, xj2,αi,αj)

if and only if (xi1 − xj2)0β > (xi2 − xj1)0β. Based on this rank condition, we propose to

estimate β by bn, which maximizes

Tn(b) =
1

n2

X
i,j

sign((∆xi +∆xj)
0b)(1 (yi1 > yj2)− 1 (yi2 > yj1)).

over the parameter space B which will be defined below, where ∆xi = xi1 − xi2 and
∆xj = xj1 − xj2.

3 Large Sample Properties of the Estimator

In this section we establish the large sample properties of our estimator. First we make the

following assumption.

Assumption 1. β belongs to a parameter space B, where B is a compact subset of Rk

satisfying B = {b ∈ Rk : |b1| = 1}, and β is an interior point of B.

This is normalization requirement since β is only identified up-to-scale. The requirement

that B is a compact set is a common assumption in estimation literature.

Assumption 2. {(yi1, yi2, x0i1, x0i2)}ni=1 is a random sample drawn from the population,

satisfying the model in (3).

Assumption 3. ∆x is a random vector satisfying: (i) The support of ∆x is not contained

in a proper linear subspace ofRk; (ii) The first component of it has everywhere positive

Lebesgue density, conditional on the other components.

This assumption is common for identification of the parameters, like in estimating

binary choice and index models (see, e.g., Manski (1987), Ichimura (1993), Klein and

Spady (1993)).

Assumption 4: For all i, ²i1 and ²i2 have the symmetric distribution around 0, inde-
pendent of (xi1, xi2,αi). Furthermore, the marginal density of ²i1 and ²i2 is positive

everywhere along the real line.
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This assumption is crucial in allowing possible nonstationarity; for example, εi1 and εi2

can be normally distributed, but with different variances, as in Honoré (1992).

Following the notation of Sherman (1993), define Z = (∆X,Y1, Y2) , T (b) = ETn(b),

then z = (∆x, y1, y2) denotes an observation from the distribution P on the set S ⊆
Rk ⊗R⊗R. Define H(y1, y2,∆x

0β) as follows:

H(y1, y2, v) = Pr[(y1 > Y2, y2 < Y1)|∆X 0β = v]− Pr[(y2 > Y1, y1 < Y2)|∆X 0β = v]

τ(z, b) = EZ(1(∆x+∆X)0b > 0)(1(y1 > Y2, y2 < Y1)− 1(y2 > Y1, y1 < Y2))

Assumption 5 let N denote a neighborhood of β and S denotes the support of the vector

of ∆X.

1. For each z in S, all mixed third partial derivatives of τ(z, .) exist on N .

2. There is a functionM(z) satisfying EM(z) < +∞ andM(z) ≥ |∂3τ(z, θ)/∂θi∂θj∂θk|
where (1, θ)0 = β. for all θ in N, all triples (i, j, k), and all z in S.

3. E|∂τ(Z,β)/∂θi|2 < +∞ for all i.

4. E|∂2τ(Z,β)/∂θi∂θj| < +∞ for all pairs (i, j).

5. The matrix E∂2τ(Z, β)/∂θ∂θ0 is negative definite.

This assumption is smoothness and boundness condition used in proving the theorem

below, it can be justified by more primitive conditions on the distribution of variables in

the model (see Lee, 1994; Sherman,1993; for some discussion on similar conditions).

Theorem If assumptions 1-5 hold, then bn is consistent and asymptotic normal,

√
n(bn − β) −→

µ
0

W

¶

where W ∼ N(0, V −1ΛV −1) with Λ = E ∂τ(Z,β)
∂θ

∂τ(Z,β)
∂θ0 V = 1

2
E ∂2τ(Z,β)

∂θ∂θ0 .

The proof of this theorem can follow Sherman (1993) and Abrevaya (1999) exactly. For

the simplicity of this paper, it is omitted here.

As in Section 7 of Sherman (1993), the estimation of covariance matrix in this theorem is

necessary to the statistical inference for the parameter β. Numerical derivatives can be used

to consistently estimate Λ and V . But some restrictions are needed to guarantee this consis-

tency, one among them is that the bandwidth choice should satisfy εn → 0, n1/4εn →∞.(εn
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denotes the bandwidth). Also in section 2 of Abrevaya (1999), a closed-form expression for

Λ and V were mentioned, and it can be non-parametrically estimated. In our case, it is

feasible but in more complicated form.

With more than two time periods, any pair of time periods can be used to construct

an estimator proposed in section 2. which will yield T (T − 1)/2 different estimators.
Specifically, we can define our estimator as a solution that maximizes

T Tn (b) =
1

n2

X
t<s

X
i,j

[1((xit + xjt)
0b > (xis + xjs)

0b)(1 (yit > yjs)− 1 (yis > yjt))−

1((xit + xjt)
0b < (xis + xjs)

0b)(1 (yit > yjs)− 1 (yis > yjt))]

4 A Simulation Study

In this section we present a small Monte Carlo study to illustrate the usefulness of our esti-

mator. We will report the results for our estimator β̂ys and Abrevaya’s leapfrog estimator

β̂lf . Throughout, we report the Mean, Bias, SD (standard deviation), and RMSE (root

mean square error) of these two estimators based on 500 replications for each design with

sample size equal to 200. The results are in the table below.

The simulation is based on the model(
yi1 = αi + x1i1 + x2i1 + ²i1

yi2 = αi + x1i2 + x2i2 + ²i2

where x1i1 and x1i2 are standard normally distributed, x2i1 ∼ 2∗uniform(0, 1).x2i2 ∼
0.5∗uniform(0, 1).the fixed effect αi = 0.5 ∗ (x2i1 + x2i2) + ηi, where ηi follows the stan-

dard normal distribution.

In the first design, the error terms εi1 and εi2 are drawn from the standard normal, in-

dependent of each other. In this case, the stationarity is satisfied, as expected, both β̂ys and

β̂lf perform satisfactorily, and the Leapfrog estimator is even better than our estimator. In

the second design, ²i1 is drawn fromN(0, 2), whereas ²i2 is drawn fromN(0, 1), independent

of each other, thus stationarity is violated; as a result, β̂lf has large biases, whereas β̂ys
performs well. In the three design, ²i1 is drawn from N(0, 3), whereas ²i2 is drawn from

N(0, 1), independent of each other. In this case, the degree of nonstationarity increases,

which leads to larger biases for β̂lf , while our estimator still performs satisfactorily.

Table
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Design I True value Mean Bias SD RMSE

β̂lf 1 1.009 0.009 0.353 0.354

β̂sy 1 1.013 0.013 0.293 0.294

Design II

β̂lf 1 0.949 -0.051 0.413 0.417

β̂sy 1 1.024 0.024 0.361 0.362

Design III

β̂lf 1 0.860 -0.140 0.401 0.424

β̂sy 1 1.047 0.047 0.391 0.409

5 Conclusion

In this paper , under symmetry restriction we have considered semiparametric estimation

of the nonstationary panel data transformation model . Compared with Abrevaya’s (1999)

approach, the main advantage of our approach is to allow the unobservable disturbance

terms for the same individual to be correlated. Our estimator is shown to be consistent and

asymptotically normal. A Monte Carlo study shows the estimator performs satisfactorily

in finite samples.
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