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Abstract

We propose a Kronecker product model for correlation or covariance matrices in the
large dimension case. The number of parameters of the model increases logarithmically
with the dimension of the matrix. We propose a minimum distance (MD) estimator based
on a log-linear property of the model, as well as a one-step estimator, which is a one-step
approximation to the quasi-maximum likelihood estimator (QMLE). We establish the rate
of convergence and a central limit theorem (CLT) for our estimators in the large dimensional
case. A specification test and tools for Kronecker product model selection and inference are
provided. In an empirical application to portfolio choice for S&P500 daily returns, we show
that our model outperforms the sample covariance matrix and a linear shrinkage estimator.
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1 Introduction

Covariance and correlation matrices are of great importance in many fields. In finance, they
are a key element in portfolio choice and risk management. In psychology, scholars have long
been assuming that the observed variables are related to the unobserved traits such that factor
models for the covariance matrix of the observed variables are appropriate. Anderson, (1984))
is a classic reference on multivariate analysis that treats estimation of covariance matrices and
hypotheses testing on them.

More recently empirical work has considered the case where the dimension of the covariance
matrix, n, relative to the sample size T', is large. This is because, in the era of big data,
many datasets now used are large. For instance, as finance theory suggests that one should
choose a well-diversified portfolio that perforce includes a large number of assets with non-
zero weights, investors now consider many securities when forming a portfolio. The listed
company Knight Capital Group claims to make markets in thousands of securities worldwide,
and is constantly updating its inventories/portfolio weights to optimize its positions. If n/T" is
not negligible, we call this the large dimensional caseEl The correct theoretical framework to
study the large dimensional case is to use the joint asymptotics (i.e., both n and 7" diverge to
infinity simultaneously albeit subject to some restriction on their relative growth rate), not the
usual asymptotics (i.e., n fixed, T tends to infinity). Thus, standard statistical methods under
the usual asymptotic framework, such as principal component analysis (PCA) and canonical-
correlation analysis (CCA), do not directly generalise to the large dimension case; applications
to, say, portfolio choice, face considerable difficulties (see Wang and Fan| (2016])).

There are many new methodological approaches for the large dimensional case, for example
Ledoit and Wolfi (2003), Bickel and Levinaj (2008), Onatski| (2009), Fan, Fan, and Lv]| (2008),
LLedoit and Wolf (2012) [Fan, Liao, and Mincheva) (2013), and [Ledoit and Wolf (2015). [Yao,
[Zheng, and Bai (2015) gave an excellent account of the recent developments in the theory and
practice of estimating large dimensional covariance matrices. Generally speaking, the approach
is either to impose some sparsity on the covariance matrix, meaning that many elements of the
covariance matrix are assumed to be zero or small, thereby reducing the number of parameters
of a model for the covariance matrix to be estimated, or to use some device, such as shrinkage
or a factor model, to reduce dimension.

We consider a parametric model for the covariance or correlation matrix - the Kronecker
product model. For a real symmetric positive definite n x n correlation matrix ©, a Kronecker
product model is a family of n x n matrices {©*}, each of which has the following structure:

" =0TRO;® 26, (1.1)

where ©7 is a nj X n; dimensional real symmetric, positive definite sub-matriz such that n =
ny - ng---ny. We require n; € Z and n; > 2 for all j; n; need not be distinct. The Kronecker
product model, per se, is not new as it has been previously considered by [Swain| (1975)) and
[Verhees and Wansbeek| (1990) under the title of multimode analysis. |Verhees and Wansbeek
(1990) defined several estimation methods based on the least squares and maximum likelihood
principles, and provided large sample variances under assumptions that the data are normal
and fixed n. There is also a growing Bayesianist and frequentist literature on multiway array
or tensor datasets, where a Kronecker product model is commonly employed. See for example
Akdemir and Guptal (2011)), Allen| (2012)), Browne, MacCallum, Kim, Andersen, and Glaser]
(2002), [Cohen, Usevich, and Comon| (2016)), [Constantinou, Kokoszka, and Reimhert| (2015),

Dobral (2014)), [Fosdick and Hofl| (2014), |Gerard and Hoff| (2015), [Hoff (2011)), Hoff| (2015)), [Hoff
(2016)), Krijnen| (2004), Leiva and Roy] (2014)), [Leng and Tang| (2012), [Li and Zhang| (2016},
Manceura and Dutilleul| (2013), Ning and Liul (|2013|), Ohlson, Ahmada, and von Rosen| (2013)),
Singull, Ahmad, and von Rosen| (2012)), [Volfovsky and Hofl| (2014)), [Volfovsky and Hoff (2015),

"We reserve the phrase ”the high dimensional case” particularly for n > 7.



and |Yin and Li| (2012). However, in both these (apparently separate) literatures, (i) n is fixed,
(ii) the number v of sub-matrices of a Kronecker product is fixed and typically small, and (iii)
each n; is also fixed but perhaps of moderate size.

We consider the Kronecker product model in the large dimensional case where v is allowed to
increase with n according to the factorization of n (each n; is fixed though). In this model, the
number of parameters of a Kronecker product model grows logarithmically with n. In particular,
we will show that a Kronecker product model induces a type of sparsity on the covariance or
correlation matrix: The logarithm of a Kronecker product model has many zero elements, so
that sparsity is explicitly imposed on the logarithm of the covariance or correlation matrix - we
call this log sparsity. Our work is among the first dealing with log sparsity; the other is |Battey
and Fan| (2017)), although there are a few differences. First, their log sparsity is an assumption
from the onset, in a similar spirit as Bickel and Levina (2008), whereas our log sparsity is
induced by a Kronecker product model. Second, they work with covariance matrices while we
shall focus on correlation matrices. Although a Kronecker product model could also be applied
to covariance matrices, log sparsity on a correlation matrix does not necessarily imply that its
corresponding covariance matrix has log sparsity. In other words, if a Kronecker product model
is correctly specified for a correlation matrix, its corresponding covariance matrix need not have
a Kronecker product structure. Even if we look at covariance matrices only, for the purpose of
comparison, a Kronecker product model imposes different sparsity restrictions - compared to
those imposed by [Battey and Fan (2017) - on the elements of the logarithm of the covariance
matrix. Third and perhaps most important, we are looking at completely different estimators.

What kind of data give rise to a Kronecker product model? In other words, when is a
Kronecker product model correctly specified? This question has been answered by [Verhees and
Wansbeek| (1990) and |Cudeck| (1988]): When covariance or correlation has some multiplicative
structure. For example, suppose that u;, are error terms in a panel regression model with
j=1,...,nyand k =1,...,ng. The interactive effects model of Bai| (2009)) is that w;, = 7, fx,
which implies that u = v ® f, where u is the njng x 1 vector containing all the elements of w; x,
Y=, m,)Tand f = (f1,..., fog )T If we assume that v, f are random, + is independent
of f, and both vectors have mean zero, this implies that

var(u) = EluuT] = E[yyT] @ E[f fT].

We hence see that the covariance matrix is a Kronecker product of two sub-matrices.

We can think of our more general model arising from multi-index data with v mul-
tiplicative factors. Multiway arrays are one such example as each observation has v different
indices (see [Hoff| (2015))). Suppose that

Wiy fig,oyiv = €1,11E2,i2 """ Evjins ij=1,...,n5, Jj=1...,0,

or in vector form

U = (ul,l,...,l) ey Unhng,...,nv)T =€1 & €2 Q- ® Ev,
where the factor € = (€j1,...,€5,,)T is a mean zero random vector of length n; with covariance
matrix ¥; for j = 1,...,v, and in addition the factors €1, . . ., &, are mutually independent. Then

EZE[UUT]221®22®'”®EU.

We hence see that the covariance matrix is a Kronecker product of v sub-matrices. Indeed,
such multiplicative effects may be a valid description of a covariance or correlation structure.
In psychometrics, multi-trait multi-method (MTMM) context has this multiplicative structure
(e.g., Campbell and O’Connell (1967) and (Cudeck (1988)). In portfolio choice, one might
consider, say, 250 equity portfolios constructed by intersections of 5 size groups (quintiles), 5
book-to-market equity ratio groups (quintiles) and 10 industry groups, in the spirit of |[Fama
and French| (1993)). For example, one equity portfolio might consist of stocks which are in the



smallest size quintile, largest book-to-market equity ratio quintile, and construction industry
simultaneously. Then a Kronecker product model is applicable either directly to the covariance
matrix of returns of these 250 equity portfolios or to the covariance matrix of the residuals after
purging other common risk factors such as momentum.

Often a covariance or correlation matrix might not exactly correspond to a Kronecker prod-
uct; that is, a Kronecker product model is misspecified. The previous literature on Kronecker
product models did not touch this aspect, but we shall demonstrate in this article that a Kro-
necker product model is a very good approximating device to general covariance or correlation
matrices, by trading off variance with bias. Indeed we show that there always exists a member
in a Kronecker product model which is closest to the covariance or correlation matrix in some
sense to be made precise shortly.

The Kronecker product model has a number of intrinsic advantages for applications. The
eigenvalues of a Kronecker product are products of the eigenvalues of its sub-matrices. Its in-
verse, determinant, and other key quantities are easily obtained from the corresponding quan-
tities of its sub-matrices, which facilitates computation and analysis. In addition, a Kronecker
product model could be used as one component of a super model consisting of several models.

For instance, the idea of the decomposition in could be applied to components of
dynamic models such as multivariate GARCH, an area in which Luc Bauwens has contributed
significantly over the recent years, see also his highly cited review paper |Bauwens, Laurent, and
Rombouts (2006]). For example, the dynamic conditional correlation (DCC) model of Engle
(2002)), or the BEKK model of Engle and Kroner| (1995)) both have intercept matrices that are
required to be positive definite and suffer from the curse of dimensionality, for which model
(1.1) would be helpful. Also, parameter matrices associated with the dynamic terms in the
model could be equipped with a Kronecker product, similar to a suggestion by Hoff (2015) for
vector autoregressions.

In this article, we shall focus on correlation matrices rather than covariance matrices. This
is partly because the asymptotic theories of a Kronecker product model for correlation matrices
nest those for covariance matrices, and partly because this will allow us to adopt a more flexible
approach to approximating a general covariance matrix, since we can estimate the variances
consistently by other well-understood methods. In practice, fitting a correlation matrix with a
Kronecker product model tends to perform better than doing so for its corresponding covariance
matrix.

We show that the logarithm of a Kronecker product model is linear in its unknown param-
eters, and use this as a basis to propose a minimum distance (MD) estimator. We establish
a rather ”crude” rate of convergence for the MD estimator under joint asymptotics. So far
endeavours to obtain a better rate have proven to be unfruitful and this question remains open.
There is a large literature on the optimal rates of convergence for estimation of high-dimensional
covariance and inverse (i.e., precision) matrices (see Cai, Zhang, and Zhou (2010) and |Cai and
Zhou (2012)). |Cai, Ren, and Zhou (2014) gave a nice review on those recent results. However
their optimal rates are not applicable to our setting because here sparsity is not imposed on the
covariance or correlation matrix, but on its logarithm.

Although the MD estimator allows direct theoretical analysis, this method is likely to be
computationally intensive and in practice we recommend to use quasi-maximum likelihood es-
timation. Hence we also discuss a quasi-maximum likelihood estimator (QMLE) and a one-step
estimator, which is an approximate QMLE. Under the joint asymptotics, we provide feasible
central limit theorems (CLT) for the MD and one-step estimators, the latter of which is shown
to achieve the parametric efficiency bound (Cramer-Rao lower bound) in the fixed n case. When
choosing the weighting matrix optimally, we also show that the optimally-weighted MD and one-
step estimators have the same asymptotic distribution. These CLTs are of independent interest
and contribute to the literature on the large dimensional CLT's (see |Huber| (1973), |Yohai and
Maronna| (1979)), Portnoy| (1985), |Mammen| (1989), Welsh (1989), Bai and Wu (1994)), Saikko-



nen and Lutkepohl (1996]) and [He and Shao, (2000)). Last, we give a specification test which
allows us to test whether a Kronecker product model is correctly specified.

We provide some evidence that the Kronecker product model works well numerically. We
also apply the Kronecker product model to portfolio selection and compare the model with the
sample covariance matrix and a linear shrinkage estimator (Ledoit and Wolf (2004)).

The rest of the paper is structured as follows. In Section [2] we lay out the Kronecker product
model in detail. Section [3| introduces the MD estimator, gives its asymptotic properties, and
includes a specification test, while Section [4] discusses the QMLE and one-step estimator, and
provides the asymptotic properties of the one-step estimator. Section [5| examines the issue of
model selection. Section [f] provides numerical evidence for the performance of the Kronecker
product model in a simulation study and an empirical application. Section[7]concludes. Primary
proofs are to be found in Appendix; the remaining proofs are put in Supplementary Material
(SM in what follows).

2 The Kronecker Product Model

2.1 Notation

Let A be an m x n matrix. vec A is a vector obtained by stacking the columns of A one
underneath the other. The commutation matriz K., , is an mn x mn orthogonal matrix which
translates vec A to vec(AT), i.e., vec(AT) = Ky, vec(A). If A is a symmetric n X n matrix, its
n(n — 1)/2 superdiagonal elements are redundant in the sense that they can be deduced from
symmetry. If we eliminate these redundant elements from vec A, we obtain a new n(n+1)/2x 1
vector, denoted vech A. They are related by the full-column-rank, n? x n(n + 1)/2 duplication
matriz D,: vec A = D,, vech A. Conversely, vech A = D, vec A, where D; is n(n + 1)/2 x n?
and the Moore-Penrose generalised inverse of D,,. In particular, D, = (D} D,)~'D] because
D,, is full-column rank.

For z € R™, let ||z||2 := /> g 27 and ||z|eo := maxj<i<p |2;| denote the Euclidean norm
and the element-wise maximum norm, respectively. diag(z) gives an n x n diagonal matrix
with the diagonal being the elements of z. Let maxeval(-) and mineval(-) denote the max-
imum and minimum eigenvalues of some real symmetric matrix, respectively. For any real
m X n matrix A = (a@j)lgigm,lgjgn, let ||A||F = [tr(ATA)]1/2 = [tl"(AAT)]l/2 = ||V€CA||2,
[Alle, := max| ) ,=1 [[Az[2 = \/maxeval(ATA), and [|All¢., := maxi<i<m > |a; ;| denote the
Frobenius norm, spectral norm ({2 operator norm) and maximum row sum matrix norm (¢
operator norm) of A, respectively. Note that || - ||« can also be applied to matrix A, i.e.,
|Alloc = maxi<i<m,i<j<n |aij|; however || - |- is not a matrix norm so it does not have the
submultiplicative property of a matrix norm.

Consider two sequences of real random matrices Xr and Yr. Xg = Op(||Yr||), where || - ||
is some matrix norm, means that for every real € > 0, there exist M. > 0 and T, > 0 such that
for all T > T, P(|| X7||/||Yr] > M:) < e. Xp = op(||Yr]|), where || - || is some matrix norm,

means that || Xr7||/||Yzr| 2 0 as T — co.

Let a V b and a A b denote max(a,b) and min(a, b), respectively. For two real sequences ar
and by, ap < bp means that ap < Cby for some positive real number C for all T > 1. ap ~ bp
means that ap and by are asymptotically equivalent, i.e., ap/br — 1 as T'— oco. For x € R, let
|z | denote the greatest integer strictly less than x and [x] denote the smallest integer greater
than or equal to z.

For matrix calculus, what we adopt is called the numerator layout or Jacobian formulation;
that is, the derivative of a scalar with respect to a column vector is a row vector.




2.2 The Model and Identification

In this section we provide more details on the specific model we consider for the large correlation
matrix. We first give a definition of the principal matriz logarithm for real symmetric, positive
definite matrices. More generally, the principal matrix logarithm could be defined for any square
complex matrix having no eigenvalues lying on the closed real axis (—o0, 0], but we do not need
this level of generality in this article. We shall drop the qualifier ”principal” for simplicity.

Definition 2.1 (Matrix logarithm). Suppose that a real, positive definite matrix A (n x n) has
the orthogonal diagonalization A = UTdiag(A1,...,\p)U. Then its matriz logarithm, denoted
log A, is defined as

log A := UTdiag(log \1, ... ,log A\,)U.

Consider an n-dimensional vector time series {x;}; that is i.i.d. with y := Ex; and
covariance matrix 3 := E[(x; — ) (2 — p)T]. Let D be the diagonal matrix containing diagonal
entries of ¥. Its correlation matrix © is

©:= D Y2y p-1/2,

A Kronecker product model for © is given by That © is a correlation matrix implies
that the diagonal entries of ©7 must be the same, although this diagonal entry could differ as
j varies. Without loss of generality, we shall impose a normalisation constraint that all these v
diagonal entries of {©7}7_; are 1.

A Kronecker product model substantially reduces the number of parameters to estimate for a
correlation matrix. In an unrestricted correlation matrix, there are n(n—1)/2 parameters, while
a Kronecker product model has only Z}’:l nj(n; —1)/2 parameters. As an extreme illustration,
when n = 256, the unrestricted correlation matrix has 32,640 parameters while a Kronecker
product model of factorization 256 = 2% has only 8 parameters! Although ©* is not sparse,
log ©* is sparse. This is due to a property of Kronecker products (see Proposition in SM

B.1] for derivation):
log©* =1logO®] R 1, @ @I, +In, ®logO50 I, @ - Q@ Ly, + -+ + I, @I, ® - - @1og O,

whence we see that log ©* has many zero elements, generated by identity sub-matrices.
After the normalisation of diagonal entries of ©; to be 1 for all j, parameters in ©7 still
warrants some discussion. As an illustration, suppose

1 08 05
er=| 08 1 02|,
05 02 1

and then one can compute that

—-0.75 1.18 0.64
log®] = 1.18 —-0.55 -0.07
0.64 —0.07 —-0.17

2Note that if n is not composite, one can add a vector of pseudo variables to the system until the final
dimension is composite. It is recommended to add a vector of independent variables u; ~ N (0, I;) such that

z¢ := (x],u])7 is an n x 1 random vector with n x n correlation matrix

@20}

=19 1

3The Kronecker product model is invariant under the Lie group of transformations G generated by A1 ® A2 ®
-+ ® Ay, where A; are n; X n; nonsingular matrices (see Browne and Shapiro| (1991))). This structure can be
used to characterise the tangent space 7 of G and to define a relevant equivariance concept for restricting the
class of estimators for optimality considerations.



Thus there are n;(n; +1)/2 parameters in log © for j = 1,...,v; we call these log parameters.
On the other hand, there are only nj(n; — 1)/2 parameters in O for j = 1,...,v; we call
these original parameters. These nj(n; — 1)/2 original parameters completely pin down those
n;(n;+1)/2 log parameters. In other words, there exists a function f : R (% =1/2 — Rns(ni+1)/2
which maps original parameters to log parameters. However, when n; > 4, f does not have
a closed form because when n; > 4 the continuous functions which map elements of a matrix
to its eigenvalues have no closed form. When n; = 2, we can solve f by hand (see Example
2.1). When n; = 3, one could use, say, Matlab, to perform symbolic computation, but the
expressions will be extremely complicated.

«_ (L o,
el 1

The eigenvalues of ©F are 1 + p] and 1 — p7, respectively. The corresponding eigenvectors are
(1,1)7/v/2 and (1,—1)T/+/2, respectively. Therefore

. (1 1 log(1 + p7) 0 11 \1
log@1_<1 —1)< 0 log(1 — p¥) 1 -1 )2

x L+p}
Llog(1— [pf]?)  }log ()
_ e

3 log (1,2%) 3 log(1 — [pi]?)

Example 2.1. Suppose

Thus .
1 1 1+py\ 1
= ( Zlog(1 —p?),=1 <7) “log(1—p%) ) .
) = (3108~ ), g 10w (12) 1og1 - 2)
To separately identify log parameters in ©7,..., 0} from the onset, we need to set the first

diagonal entry of log © to be 0 for j =1,...,v — 1. In total there are

v

s = w—v—l = O(logn
Y.~ (0= = Otlog)
(identifiable) log parameters in ©7,...,0%; let 6* € R® denote these. On the other hand, to
separately identify original parameters in O7, ..., O} from the onset, no additional identification
restriction is needed.

To estimate a Kronecker product model, there are two approaches. First, one can estimate
original parameters directly using Gaussian quasi-maximum likelihood estimation (see Section
4.1). Second, one can estimate log parameters 0* using the principle of minimum distance or
Gaussian quasi-maximum likelihood estimation (see Section [3| and Section ; then recover
the estimates of original parameters via the matrix exponential. When one adopts the second
approach, the diagonal of the estimated ©} cannot have exact ones. In this case, one can replace
these diagonal estimates with 1. To study the theoretical properties of a Kronecker product
model, we feel that the second approach is more appealing as log parameters are additive in
nature while original parameters are multiplicative in nature; additive objects are easier to
analyse theoretically than multiplicative objects. To use Kronecker product models in practice,
the first approach is far easier to implement.

3 The Minimum Distance Estimator

In this section, we study how to estimate log parameters 6* of the Kronecker product model

[T



3.1 Estimation

We first give the main useful model property that delivers a simple estimation strategy. Proposi-
tionin Appendixproves that there exists an n(n+1)/2x s full column rank, deterministic
matrix F such that

vech(log ©*) = E6*.

(The R code for computing this matrix E is available.) Given a factorization n = nj - ng---ny,
if there exists an ©T € {©*} such that © = O, we say that the Kronecker product model {©*}
is correctly specified (i.e., vech(log ®) = Ef). Otherwise the Kronecker product model {©*} is
misspecified.

Define the sample covariance matrix and sample correlation matrix

Z(J:t _ i")(%: _ E)T’ (;‘)T — ﬁ;l/QiTﬁ;I/z,

where z := (1/T) ZtT:l 2y and Dy is a diagonal matrix whose diagonal elements are diagonal

elements of Y.
We show in Appendix that in the Kronecker product model {©*} there exists a unique
member, denoted ©°, which is closest to the correlation matrix © in the following sense:

6° = 9°(W) := arg min [vech(log ©) — E*]TW [vech(log ©) — E6*], (3.1)

0*cRs

where W is an(n+1)/2 xn(n+1)/2 positive definite weighting matrix which is free to choose.
Clearly, #° has the closed form solution §° = (ETWE)~!ETW vech(log©). The population
objective function (3.1) allows us to define a minimum distance (MD) estimator:

07 = Op(W) := arg glin[vech(log Or) — Eb]"W(vech(log ©1) — Eb], (3.2)
6 S
whence we can solve R X
Or = (ETWE) ' ETW vech(log Or). (3.3)

Thus we have R A
07 — 0° = (ETWE) ' ETW vech(log O — log ©).

Note that #° is the quantity which one should expect Or to converge to in some probabilistic
sense regardless of whether the Kronecker product model {©*} is correctly specified or not.
When {©*} is correctly specified, i.e., there exists a @ such that vech(log ©) = Ef, we have §° =
(E"WE) L ETW vech(log ©) = (E"WE) " 'ETWEQ = 6. In this case, Or is indeed estimating

the elements of the correlation matrix ©.

3.2 Rate of Convergence

We shall now introduce some assumptions for our theoretical analysis.

Assumption 3.1.

(i) {x} | are subgaussian random vectors. That is, for allt, for every a € R™ with ||a||2 = 1,
and every € > 0 ,
P(laTxy| > €) < Ke ¢¢,

for positive absolute constants K and C.
(i) {x:}L, are normally distributed.

Assumption 3.2.



(i) n,T — oo simultaneously, and n/T — 0.

(ii) n,T — oo simultaneously, and

n?k3(W)w? log? n
T

(Tzh log?n vV n?k3(W)w? log® n - log® n4) =o0(1), for some~y > 2,

where k(W) is the condition number of W for matriz inversion with respect to the spectral
norm, i.e., k(W) = |[W=|, |Wll¢, and w is defined in Assumption (ii).

(iii) n,T — oo simultaneously, and

(a) for some vy > 2,
n?w?log® n

T (nwr(W) v T3 logn) = o(1),

(b)
w?logn _

=o(1).

n
Assumption 3.3.

(i) The minimum eigenvalue of ¥ is bounded away from zero by an absolute constant.
(ii)
. 1 1
mineval (ETE) > —>0.
n w

(At most w = o(n).)

Assumption (1) is standard in high-dimensional theoretical work. In essence it assumes
that a random vector has exponential tail probabilities, which allows us to invoke some concen-
tration inequality such as the Bernstein’s inequality in Appendix Note that Assumption
m(i) could be replaced by a finite moment assumption and this will only result a rate slightly
worse than /n/T in Proposition (1) (c.f. [Vershynin (2012))). Assumption (ii), which
will only be used in Section [ for quasi-maximum likelihood or one-step estimation, implies
Assumption (i); we stress that Assumption ii) is not needed for the minimum distance
estimation (Theorem or [3.2)).

Assumption (1) is for the derivation of the rate of convergence of spectral norm of ©7— 0.
To establish the same rate of convergence of spectral norm of Sr— 3, one only needs n/T —
¢ € [0,1]. However for correlation matrices, we need n/T — 0. This is because a correlation
matrix involves inverses of standard deviations. Assumptions [3.2[(ii) and (iii) are sufficient
conditions for the asymptotic normality of the minimum distance estimators (Theorems and
and of the one-step estimator (Theorem , respectively. If Assumption (1) holds, v in
Assumption [3.2(ii) and (iii) could be made arbitrarily large, which makes Assumptions [3.2[(ii)
and (iii) much less restrictive. Assumption (ii) necessarily requires n*/T — 0. At first glance,
it looks restrictive, but we would like to remark that this is only a sufficient condition. More
importantly, we are trying to establish a CLT for elements of the second moment of z; in the
large dimensional case. If one is familiar with the literature on the large-dimensional CLT (e.g.,
Lewis and Reinsel| (1985)), Saikkonen and Lutkepohl| (1996)), Chang, Chen, and Chen| (2015)),
they usually require n3/T — 0 for establishment of CLTs for elements of the first moment of
the data, so our assumption is nothing bold. The same reasoning applies to Assumption (iii).

Assumption (1) is also standard. This ensures that © is positive definite with the minimum
eigenvalue bounded away from 0 by an absolute positive constant (see Proposition i) in



Appendix [A.4) and its logarithm is well-defined. Assumption (ii) postulates a lower bound
for the minimum eigenvalue of ETE /n; that is

1

— 0(v=).
\/mineval (%ETE)

We divide ETE by n because all the non-zero elements of ETE are a multiple of n (see Propo-
sition in Appendix [A1)). In words, Assumption [3.3(ii) says that the minimum eigenvalue
of ETE /n slowly drifts to zero.

Proposition 3.1.
(i) Suppose Assumptions[3.1|(i), [3.4(i) and[3.9(i) hold. Then

n

60 -6l =0, (/7).

(ii) Suppose that ||@T — 0||¢, < a with probability approaching 1 for some absolute constant
a > 1, then we have
[log ©7 —1og Olg, = Op([|O1 — Olle,).

(iii) Suppose Assumptions|3.1(i), [3.9(i) and[3.5 hold. Then

1o~ 81 = 0, (/=5

where ||-||2 is the Euclidean norm, k(W) is the condition number of W for matriz inversion

with respect to the spectral norm, i.e., k(W) = |[W= o [|We,, and w is defined in
Assumption [3.5(i).
Proof. See Appendix [A23] O

Proposition (1) provides the rate of convergence of the spectral norm of Or — O, which
is a stepping stone for the rest of theoretical results. Strictly speaking, the rate should be
n/TV \/n/T, which collapses to \/n/T under Assumption (1) This rate is the same as that
of ”ZAET —X||¢,. Proposition (ii) is also of independent interest as it relates || log O —log O,
to |©7 — O,

Proposition (iii) gives the rate of convergence of the minimum distance estimator Or.
6° are log parameters of the member in the Kronecker product model, which is closest to ©
in the sense discussed earlier. For sample correlation matrix Or, the rate of convergence of
| vec(O7 — ©)||2 is \/n?/T (square root of summing up O(n?) terms each of which has a rate
1/T). Thus the minimum distance estimator 07 of the Kronecker product model converges
faster provided wk (W) is not too large, in line with principle of dimension reduction. However,
given that the dimension of 6° is s = O(logn), one would conjecture that the optimal rate of
convergence should be y/logn/T. In this sense, Proposition (iii) does not demonstrate the
full advantages of a Kronecker product model. Because of the severe non-linearity introduced
by matrix logarithm as it is defined through spectrum, it is beyond the scope of this article to
prove a faster rate of convergence of ||y — 0°||s.



3.3 Asymptotic Normality

To derive the asymptotic normality of the minimum distance estimator, we consider two cases

(i) p is unknown but D is known;

(ii) both g and D are unknown.

We will derive the asymptotic normality of the minimum distance estimator for both cases.
Define the following n? x n? dimensional matrix H:

H:= /l[t(91)+1}‘1®[t(@I)+I]—1dt. (3.4)
0

Define also the n x n and n? x n? matrices:

T
- 1 -
Y= — Z(wt —p)(xy — p)7 V = var(VT vec(S7 — X)).
=
Since z > ([£],2 — |£]n) is a bijection from {1,...,n%} to {1,...,n} x {1,...,n}, it is easy

to show that the (x,y)th entry of V is

Vi = Vijke = E[(ei—ps) (e —105) (@ po—pon) (e 0= pee) | = B[ (we,— i) (e — ) JE[ (0 o — o) (24,0 — 1)

where p; = Eay; (similarly for pj, pg, o), ¢,y € {1,...,n?} and 4,5,k,¢ € {1,...,n}. In the
special case of normality, V = 2D,,D;/ (¥ ® ¥) (Magnus and Neudecker| (1986 Lemma 9).

Assumption 3.4. V is positive definite for all n, with its minimum eigenvalue bounded away
from zero by an absolute constant and mazximum eigenvalue bounded from above by an absolute
constant.

Assumption is also a standard regularity condition. It is automatically satisfied under
normality given Assumptions [3.2(i) and [3.3(i) (via Proposition [A.3|vi) in Appendix [A.3]). As-
sumption could be relaxed to the case where the minimum (maximum) eigenvalue of V is
slowly drifting towards zero (infinity) at certain rate. The proofs for Theorem and Theorem
remain unchanged, but this rate will need to be incorporated in Assumption (ii).

3.3.1 When p Is Unknown But D Is Known

In this case, @T simplifies into (:)T,D = D~V 2fJTD_1/ 2. Similarly, the minimum distance
estimator @7 simplifies into 6rp = (ETWE)~'ETW vech(log (:)TJ)). Let ﬁT,D denote the
n? x n? matrix

1
Hrp:= / (t(Or,p —I)+ 17" @ [t(Or,p — 1) + 1] "dt.
0

Define V’s sample analogue Vi whose (z,y)th entry is

T

N N 1
VIwy = V0ighe = T Z(fct,i = Zi)(@ej — ) (Te g — T) (Te0 — To)
t=1

1 & 1 &
( Zl’tz— xt,g—l’g>< thk—%’k xt,e—@)),
t=1 t=1
where Z; 1= % 25:1 zy; (similarly for 7, 7, and %), x,y € {1,...,n?} and i,j, k, £ € {1,...,n}.
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For any ¢ € R?® define the scalar
Gp = cJpc:=N(ETWE) 'ETWD}H(D V29D V)V(D~ V20D V) HD"WE(ETWE) e

In the special case of normality, Gp could be simplified into (see Example in SM for
details): 2¢T(ETWE)'ETWD,fH(© @ ©)HD;}"WE(ETWE)~'c. We also define the estimate
Gr,p:

Grp = cJrpe = (ETWE) 'E"WD; Hy p(D~ 20D~ Y2\ V(D™ V20D~V Hy, p D WE(ETW E) .
Theorem 3.1. Let Assumptions[3.1)(i), [3.3(i1), and [3.4) be satisfied. Then
VT (Brp —6°) 4

- = N(0,1),
\/GT,p
for any s x 1 non-zero vector ¢ with ||c||2 = 1.
Proof. See Appendix [A4] O

Theorem is a version of the large-dimensional CLT, whose proof is mathematically non-
trivial. Because the dimension of 6° is growing with the sample size, for a CLT to make sense,
we need to transform HATy p — 0° to a univariate quantity by pre-multiplying ¢T. The magnitudes
of the elements of ¢ are not important, so we normalize it to have unit Euclidean norm. What
is important is whether the elements of ¢ are zero or not. The components of éT7 p — 09 whose
positions correspond to the non-zero elements of ¢ are effectively entering the CLT.

We contribute to the literature on the large-dimensional CLT (see Huber| (1973), Yohai and
Maronna| (1979), |[Portnoy| (1985), Mammen (1989), Welsh, (1989), Bai and Wu/(1994), |Saikkonen
and Lutkepohl| (1996 and [He and Shao (2000)). In this strand of literature, a distinct feature
is that the dimension of parameter, say, §°, is growing with the sample size, and at the same
time we do not impose sparsity on 6°. As a result, the rate of growth of dimension of parameter
has to be restricted by an assumption like Assumption (ii); in particular, the dimension of
parameter cannot exceed the sample size. This approach is different from the recent literature
on high-dimensional statistics such as Lasso, where one imposes sparsity on parameter to allow
its dimension to exceed the sample size.

We also give a corollary which allows us to test multiple hypotheses like Hy : ATAY = a.

Corollary 3.1. Let Assumptions[3.1)(1), [3.3(ii), and be satisfied. Given a full-column-
V0ogn - nk(W)

rank s X k matriz A where k is finite with ||Allz, = Op( ), we have
VT(AVJp pA) V2 AT (0 — 0°) % N (0, 1) .

Proof. See SM [B.6] O

Note that the condition ||Alls, = Op(1/logn - nk(W)) is trivial because the dimension of A is
only of order O(logn) x O(1). Moreover we can always rescale A when carrying out hypothesis
testing.

If one chooses the weighting matrix W optimally, albeit infeasibly,

Wop = [D H(D™Y2 @ D-V2) V(D12 @ D"V HD;T] ™,

the scalar Gp reduces to

_ —1
ot (ET (D H(D™2 @ D2 V(D2 DY) HD; 7] E) c.

11



Under a further assumption of normality (i.e., V = 2D,D; (X ® X)), the preceding display
further simplifies to

1 -1
T <2ETD;H—1(@—1 ® @_1)H_1DnE> c,

by Lemma 14 of |Magnus and Neudecker| (1986). We shall compare the preceding display with
the variance of the asymptotic distribution of the one-step estimator in Section [

3.3.2 When Both 4 and D Are Unknown

The case where both p and D are unknown is considerably more difficult. If one simply recycles
the proof for the case where only p is unknown and replaces D with its plug-in estimator DT,
it will not work.

Let I;TT denote the n? x n? matrix

Hp = /Ol[t(@T — D)+ 1 @ [t(Or — 1)+ I 1dt.

Define the n? x n? matrix P:

n
Pi=Iz2—DpDi(I,® O)My,  Mg:=Y (F;® Fy),
=1

where Fj; is an n x n matrix with one in its (i,4)th position and zeros elsewhere. My is a n? x n?

diagonal matrix with diagonal elements equal to 0 or 1; the positions of 1 in the diagonal of
M, correspond to the positions of diagonal entries of an arbitrary matrix A in vec A. Note that
matrix P is an idempotent matrix of rank n? — n and first appeared in (4.6) of Neudecker and
Wesselman| (1990). In particular, given any correlation matrix ©, P has n?
Neudecker and Wesselman| (1990) proved that

0vec® B
dvecY

the derivative is a function of X.
For any ¢ € R?® define the scalar G and its estimate Gr:

— n rows of zeros.

P(D™'?2 @ D712,

G:=c"Je:= T (ETWE) '\ETWD}HP(D 29D~ V2\V(D~ 20D~/ PTHD " WE(ETW E)'c.

Gr = VJpc = T (ETWE) \EYWD;f Hp Pr(D;*@ D" *)Vir(D;*@ Dy ) PLH D T WE(ETWE) e,
where Pp =12 — D, D} (I, ® éT)Md.
Assumption 3.5.

(i) For every positive constant C

Ovec©®
Oovect

- P(Dfl/Q ®D71/2)
Y=X*

sup
TS -X | p<Cy/ 22

where -|y—y+ means "evaluate the argument ¥ at 3*7.

(ii) The s x s matric
ETWDXHP(D V2@ D V\WV(D"Y? @ DY) PTHD"WE
has full rank s (i.e, being positive definite). Moreover,

mineval (ETWD,J{HP(D”/Q ® D~V (D12 g D’l/Q)PTHDj{TWE) > " nineval (W),

q]s
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Assumption (1) characterises some sort of uniform rate of convergence in terms of spectral

norm of the Jacobian matrix g‘;‘;‘ég. This type of assumption is usually needed when one wants

to stop Taylor expansion, say, of vec @T, at first order. If one goes into the second-order
expansion (a tedious route), Assumption (1) can be completely dropped at some expense
of further restricting the relative growth rate between n and 7T'. The radius of the shrinking
neighbourhood /n?/T is determined by the rate of convergence in terms of the Frobenius norm
of the sample covariance matrix ¥7. The rate on the right side of Assumption (1) is chosen
to be y/n/T because it is the rate of convergence of

Ovec©
ovecX

. P(D_1/2 ®D_1/2)
S=%r

Ll

which could be easily deduced from the proof of Theorem This rate \/n/T could even be
relaxed to y/n2/T as the part of the proof of Theorem which requires Assumption (1) is
not the ”binding” part of the whole proof.

We now examine Assumption (ii). The s x s matrix

ETWD;HP(D V2@ D~V\V(D™Y2 @ DY) PTHD"WE

is symmetric and positive semidefinite. By Observation 7.1.8 of |Horn and Johnson (2013), its
rank is equal to rank(ETW D} HP), if (D=2 @ D=Y/2)V(D~/? @ D=1/2) is positive definite.
In other words, Assumption [3.5(ii) is assuming rank(ETW D} HP) = s, provided (D~'/? ®
D12 V(D12 @ D~1/2) is positive definite. Even though P has only rank n? — n, in general
the rank condition does hold except in a special case. The special case is © = I,&W = I;(;,11) /2-
In this special case

rank(ETW D} HP) = rank(ETD;[P) =
j=1

nj(n; — 1)

< Ss.
B S

The second part of Assumption (ii) postulates a lower bound for its minimum eigenvalue.
The rate mineval?(W)n/w is specified as such because of Assumption (ii). Other magnitudes
of the rate are also possible as long as the proof of Theorem goes through.

Theorem 3.2. Let Assumptions[3.1)(i), [3.3(i1), and[3.5 be satisfied. Then

TcT (0 — 6°
w LA N(0,1),
vV Gr
for any s x 1 non-zero vector ¢ with ||c||a = 1.
Proof. See SM O

Again Theorem [3.2]is a version of the large-dimensional CLT, whose proof is mathematically
non-trivial. It has the same structure as that of Theorem However GT differs from G’T, D
reflecting the difference between GG and Gp. That is, the asymptotic distribution of the minimum
distance estimator depends on whether D is known or not.

We also give a corollary which allows us to test multiple hypotheses like Hy : ATAY = a.

Corollary 3.2. Let Assumptions [3.1)(i), [3.9(ii), and be satisfied. Given a full-

column-rank s x k matriz A where k is finite with || A|le, = Op(\/log2 n-nk2(W)w), we have

VT(ATJp A"V AT (B — 6°) & N (0, 1) .
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Proof. Essentially the same as that of Corollary O

The condition ||Al¢, = Op(\/ log? n - nk2(W)w) is trivial because the dimension of A is only

of order O(logn) x O(1). Moreover we can always rescale A when carrying out hypothesis
testing.

3.4 A Specification Test

We give a specification test (also known as an over-identification test) based on the minimum
distance objective function in (3.2). Suppose we want to test whether the Kronecker product
model {©*} is correctly specified given the factorization n = nj - ng - - - n,. That is,

Hy:© € {0} (i.e.,vech(log®) = E0), H,:0 ¢ {0"}.
We first fix n (and hence v and s). Recall (3.2)):

O = Op(W) := arg in]iRn[V(ech(log Or) — Eb]"Wvech(log O7) — Eb] =: arg ll)fn]iRn gr(b)TWgr(b).
€R® cR?
Proposition 3.2. Fixzn (and hence v and s).

(i) Suppose p is unknown but D is known. Let Assumptions (z'), and be satisfied.
Thus, under Hy,

5 A 5 d
Tgr.p(07,0)7S7 p9T.0(07,0) = Xiini1y/2—s (3.5)

where

gT,D(b) = vech(log éT,D) — FEb
Sr.p =D} Hyp(D™V? @ D™Y2)\Vp (D2 @ DY) Ay p DT

(it) Suppose both y and D are unknown. Let Assumptions[3.1|(i), and 3.5 be satisfied.
Thus, under Hy,

A Al s d
Tgr(0r)" S5 gr(07) = Xoni1)/2—e0
where

S’T = D:{E[TPT(ZA);UQ ® D;1/2)VT(I§;1/2 & ﬁ;l/g)p%ﬁTDzT

Proof. See SM [8.6] O

From Proposition (3.2}, we can easily get the following result of the diagonal path asymptotics,
which is more general than the sequential asymptotics but less general than the joint asymptotics
(see Phillips and Moon| (1999)).

Corollary 3.3.

(i) Suppose pu is unknown but D is known. Let Assumptions|3.1)(i), and [3.4) be satisfied.
Under Hy,

A - 5 1
T97.0,0(071.0)"S7 1, p9T.n.0(O1:0.0) — [n(nTJr) -

]
[n(n+ 1) — 2s] 1/2 - N1,

where n = np as T — oo.

14



(i) Suppose both p and D are unknown. Let Assumptions|[3.1)(i), and[3.5 be satisfied.

Under Hy, as T — o0,

TgT,n(éT,n)T‘gi}@gT,n(éT,n) - [n(n;l)
[n(n+1) — 2s] 12

— 4] 4 N(0,1),

where n =np as T — 0.

Proof. See SM O

4 The QMLE and One-Step Estimator

4.1 The QMLE

In the context of Gaussian quasi-maximum likelihood estimation (QMLE), given a factorization
n = nj - ng---n,, we shall additionally assume that the Kronecker product model {©*} is
correctly specified (i.e. vech(log®) = E@). Let p € [—1,1]°» be original parameters of the
Kronecker product model; we have mentioned that

sp = _mnj(n; —1)/2.
j=1

The log likelihood function in terms of original parameters p for a sample {z1,za,..., 27} is
given by

T
Tn T 1 _ R
tr(p, D, p) = —=5-log(2m) — < log Dl/Q@(p)Dl/Z‘ =5 2 (@ =)D (p) T DT @y — ).
t=1

Write Q = Q(0) := log® = log ©(p). The log likelihood function in terms of log parameters 6
for a sample {z1,z,..., 27} is given by

gT(/’% D7 9)

n T 1<
— —= log(27) - 5 log | D2 exp(0))D2| = 3 3 (we — )T D™ exp(€(60)] " D73y - ).
t=1
(4.1)

In practice, conditional on some estimates of u and D, we use an iterative algorithm based
on the derivatives of ¢7 with respect to either p or 6 to compute the QMLE of either p or
f. Proposition below provides formulas for the derivatives of £ with respect to 6. The
computations required are typically not too onerous, since for example the Hessian matrix is of
an order logn by logn. See [Singull et al. (2012) and Ohlson et al.| (2013]) for a discussion of
estimation algorithms in the case where the data are multiway array and v is of low dimension.
Nevertheless since there is quite complicated non-linearity involved in the definition of the
QMLE, it is not so easy to directly analyse QMLE.

Instead we shall consider a one-step estimator that uses the minimum distance estimator in
Section [3|to provide a starting value and then takes a Newton-Raphson step towards the QMLE
of #. In the fixed n it is known that the one-step estimator is equivalent to the QMLE in the
sense that it shares its asymptotic distribution (Bickel (1975)).

Below, for slightly abuse of notation, we shall use u, D, 0 to denote the true parameter (i.e.,
characterising the data generating process) as well as the generic parameter of the likelihood
function; we will be more specific whenever any confusion is likely to arise.
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4.2 The One-Step Estimator

Here we only examine the one-step estimator when w is unknown but D is known. When neither
w nor D is known, one has to differentiate with respect to both # and D. The analysis
becomes considerably more involved and we leave it for future work. Suppose D is known, the
likelihood function reduces to

ET,D (07 ,LL) =

Tn T 1 &
— = log(2m) — 5 log )DW expm(e))DW\ — 5 2w = W) D™ [exp(Q(6))] 7 DA (e — ).

(4.2)

It is a well-known result that for any choice of ¥ (i.e., D and 6), the QMLE for p is . Hence
we may define

éQMLE,D = arg mgxﬁTﬁp(G, .’Z’)
Proposition 4.1. The s x 1 score function of with respect to 0 takes the following form

Olr (0, 1) _ T THT ! tQ (1-t)Q —Qp—-1/2% -1/2,-Q -Q
80T_2ED”/06 ®e dt[vec(e D >rD e —e )]

The s x s block corresponding to 6 of the Hessian matrix of takes the following form

0207, p(0, 1)
90907

T - -
— 5 ETDIY, (e D V28D V2 @ I, + I, e D287 D72 — I,) (e @ e ) 1D, E

T 1 1
+ 5 (V] ® ETD]) / Px (I2 @ vece!=99) / e @ 1= s . tdtD, E
0 0
T 1 1
+ 5 (¥} ® ETD) / Pr (vece™ ® 1) / e @ (=800 . (1 — t)dtD, E,
0 0
where Pi = I, ® Ky, ® I, and
1
\Ifl = \Ill(e) = / etQ(G) & 6(1_”9(9)(#,
0

Wy — Wy(0) := vec (e‘ﬂ(")D‘l/ziTD‘l/%‘Q(@) _ 6_9(9)) .

Proof. See SM B4 O

Since EWy(f) = 0, where 6 denotes the true parameter, so the negative normalized expected
Hessian matrix evaluated at the true parameter 6 takes the following form

. 10%rp,p)] 1. —Q(0) o —O(6)
TD =E |:_T808(9T:| = §E anl(e) (6 ®e ) \Ijl(e)DnE
1 1
_lgpr / / eltts=D2 @ (== s D, E
2 " 0 0 "

1

1 1

1

=3 ETD! [ / / ot lg @”Sdtds] D,E =: §ETD7TZEDHE.
0 0
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Under normality (i.e., V = 2D, D;f (S ®X)), one can verify that Yp = E [+ 8ZT;9%$9,;¢) (%T’gg(e’“)].

We then propose the following one-step estimator in the spirit of van der Vaart (1998) p72 or
Newey and McFadden| (1994) p2150:

By R . O p(Orp, T
r = b — 173, L2OLDD) ), (43)

where 'TT7D = %ETD,TZ [fol fol (:)T’TJFS_1 ® é)%p_t_sdtds] D, E =: %ETDJIETDHE. (We show in SM

that TT, p is invertible with probability approaching 1.) We did not use the plain vanilla

. . . O p(0,n) . .
one-step estimator because the Hessian matrix %D@(T’“) is rather complicated to analyse.

4.3 Large Sample Properties

Assumption 4.1. For every positive constant M and uniformly in b € R® with ||b]|l2 = 1,

ST [ 10lrp(0*,7)  1rp(9,7)

sup
. nwk(W)
0%:[|0* =02 <M/ “m

T o6 T o067 = op(1).

N 9)}

Assumptionis one of the sufficient conditions needed for the asymptotic normality of éT, D
(Theorem . This kind of assumption is standard in the asymptotics of one-step estimators
(see (5.44) of van der Vaart (1998)) p71) or of M-estimation (see (C3) of He and Shao| (2000))).
Assumption implies that %%ﬁe’m) is differentiable at the true parameter 6, with derivative
tending to YTp in probability. The radius of the shrinking neighbourhood \/nwk(W)/T is
determined by the rate of convergence of any preliminary estimator, say, éT7D in our case.
It is possible to relax the o,(1) on the right side of Assumption to op(y/n/(w?logn)) by
examining the proof of Theorem [4.1

We next provide the large sample theory for éT, D-

Theorem 4.1. Suppose that the Kronecker product model {©*} is correctly specified. Let As-

sumptions|3.1\(i1), |3.9(7i1), |3.5, and|4. 1| be satisfied. Then
ptions [3.1(ii), [3.9(ii), fi
VTV (07.p —0) 4

= — N(0,1)
VOTT b
for any s x 1 vector b with ||b||2 = 1.

Proof. See SM O

Theorem is a version of the large-dimensional CLT, which is difficult to derive. It has
the same structure as that of Theorem or Theorem Note that if we replace normality
(Assumption [3.1[ii)) with the subgaussian assumption (Assumption (1)) - that is Gaussian
likelihood is not correctly specified - although the norm consistency of 67 p should still hold, the
ﬁmpto‘cic variance in Theorem needs to be changed to have a sandwich formula. Theorem
4

says that ﬁbT(éTvD —0) 4 N (O,bT (E [—lw])_l b). In the fixed n case, this

T 060007
2
estimator achieves the parametric efficiency bound by a well-known result %géf#) = 0. This

shows that our one-step estimator HNT, p is efficient when D (the variances) is known.
fad -1 _ 1 tlog® (1—t)log®© g4 _ < 43 ;
By recognising that H™" = fo e ®e dt = U, (see Proposition m in SM m , We
see that, when D is known, under normality and correct specification of the Kronecker product

model, éT, p and the optimal minimum distance estimator éT, p(Wop) have the same asymptotic
variance, i.e., (AETDIH (07! ® @_1)H_1DnE)71.

We also give the following corollary which allows us to test multiple hypotheses like Hy :
AT0 = a.

17



Corollary 4.1. Suppose the Kronecker product model {©*} is correctly specified. Let Assump-

tions [3.1)(ii), [3.9(iii), and[4.1] be satisfied. Given a full-column-rank s x k matriz A where
k is finite with ||A|¢, = Op(v/logn -n), we have

VT (AT, A) V2 AT (brp — 6) % N (0,11) -

Proof. Essentially the same as that of Corollary O

The condition ||Al|s, = Op(v/logn - n) is trivial because the dimension of A is only of order
O(logn) x O(1). Moreover we can always rescale A when carrying out hypothesis testing.

5 Model Selection

We briefly discuss the issue of model selection here. One shall not worry about this if the data
are in the multi-index format with v multiplicative factors. This is because in this setting the
Kronecker product model is pinned down by the structure of multiway arrays - there is no model
uncertainty. This issue will pop up when one uses a Kronecker product model to approximate
a general covariance or correlation matrix.

First, note that for a given Kronecker product model, if one permutes the data, the per-
formance of this Kronecker product model is likely to vary. Thus in practice one needs to
investigate sensitivity of performance of a Kronecker product model when permuting the data.

Second, if one fixes the ordering of the data as well as factorization n = nj - - - n,, but simply
permutes @;‘fs, one obtains a different ©* (i.e., a different Kronecker product model). Although
the eigenvalues of these two Kronecker product models are the same, the eigenvectors of them
are not.

Third, if one fixes the ordering of the data, but uses a different factorization of n, one
then obtains a completely different Kronecker product model. Suppose that n has the prime
factorization n = pips - - - p, for some positive integer v (v > 2) and primes p; for j =1,...,v.
Then there exist several different Kronecker product models, each of which is indexed by the
dimensions of the sub-matrices. The base model has dimensions (p1,p2,...,py), but there are
many possible aggregations of this, for example, ((p1 + p2), ..., (Pv—1 + Dv))-

To address the second and third issues, we might choose between those Kronecker product
models using some model selection criterion that penalizes the larger models. For example,

BIC(p) = =2ty (p, D, p) + splogT,

where lp(-,-,-) is the log likelihood function defined in Section {4} p is original parameters
associated with a Kronecker product model, and s, is dimension of p. Typically there are not
so many factorizations to consider, so this is not too computationally burdensome.

6 Numerical Studies and an Application

6.1 Numerical Studies

We first provide a small simulation study that evaluates the performance of the QMLE, and
then apply our model to daily stock returns.
We simulate T random vectors x; of dimension n according to

=222,z ~N(0,I) IT=202Q - Q%,

where n = 2 and v € N. The sub-matrices ¥; are 2 x 2. These sub-matrices X; are generated
with unit variances and off-diagonal elements drawn from a uniform distribution on (0,1). This
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ensures positive definiteness of 3. Due to the unit variances, ¥ is both the covariance and
correlation matrix of x;, but the econometrician is unaware of this and applies a Kronecker
product model to the covariance matrix of x;. We shall consider the correctly specified case,
i.e., the Kronecker product model has a factorization n = 2¥. The sample size is set to T' = 300.
We shall adopt the first approach of estimation to estimate original parameters directly. For
identification, the upper diagonal elements of ¥;, j > 2, are set to 1; altogether, there are 2v+1
original parameters to estimate by quasi-maximum likelihood.

As in Ledoit and Wolf (2004), we use a percentage relative improvement in average loss
(PRIAL) criterion, to measure the performance of the Kronecker product model ﬁlKron with
respect to the sample covariance estimator 7. It is defined as

IEHi:Klfom — EH%

PRIAL1 =1 — —— ;
El[Xr — X%

Often the estimator of the precision matrix, ¥~!, is more important than that of ¥ itself, so we
also compute the PRIAL for the inverse covariance matrix, i.e.,

1EHEKron — 2_1”%'

PRIAL2 =1 — 0 —
E|S7' - 57113

Note that this requires invertibility of the sample covariance matrix $7 and therefore can only
be calculated for n < T

Our final criterion is the minimum variance portfolio (MVP) constructed from an estimator
of the covariance matrix. For example, the weights of the minimum variance portfolio are given
by

Y1,

D Yo
where 1, = (1,1,...,1)" of dimension n, see e.g., Ledoit and Wolf (2003) and |Chan, Karceski,
and Lakonishok! (1999)). The inverse of a Kronecker product model is easily found by inverting
the sub-matrices ¥7, which can be done analytically, since

wMy =

In fact, because ¢, = tp; @ L, @ -+ @ Lp,, We can write

B (( DleE) e ---®(2;)*1)Ln
G ((EDTRE) 0@ (55 )
= (E ) b (Z*) lny (E:)_lbnu
= e R ® Lﬁz(éﬁ)*%g ®...®m,
1

;
B T TR o T
In cases where n is large, this structure is very convenient computationally. The first portfolio
weights are constructed using the sample covariance matrix $7 and the second portfolio weights
are constructed using the Kronecker product model ﬁ]Kron. These two portfolios are then eval-
uated (by calculating the variance) using the out-of-sample returns generated using the same
data generating mechanism. The ratio of the variance of the latter portfolio over that of the
former (VR) is recorded. See Fan, Liao, and Shi (2015)) for a discussion of risk estimation for
large dimensional portfolio choice problems.

We repeat the simulation 1000 times and obtain for each simulation PRIAL1, PRIAL2
and VR. Table [1| reports the median of the obtained PRIALs and VR for various dimensions.

19



n 4 8 16 32 64 128 256
PRIAL1 033 069 0.8 094 098 099 0.99
PRIAL2 034 070 0.89 097 099 1.00 1.00

VR 0.997 0991 0975 0.944 0.889 0.768 0.386

Table 1: PRIAL1 and PRIAL2 are the medians of the PRIALI and PRIAL2 criteria, respectively,
for the Kronecker product model with respect to the sample covariance estimator in the case of correct
specification. VR is the median of the ratio of the variance of the MVP using the Kronecker product
model to that using the sample covariance estimator. The sample size is fized at T = 300.

Clearly, as the dimension increases, the Kronecker product model rapidly outperforms the sam-
ple covariance estimator. The relative performance of the precision matrix estimator (PRIAL2)
is very similar. In terms of the ratio of MVP variances, the Kronecker product model yields a
23.2 percent smaller variance for n = 128 and 61.4 percent for n = 256. The reduction becomes
clear as n approaches T

6.2 An Application

We now apply the model to a set of n = 441 daily stock returns x; of the S&P 500 index,
observed from January 3, 2005, to November 6, 2015. The number of trading days is T' = 2732.

Kronecker product models are fitted to the correlation matrix © = D~1/25D~Y2 where D
is the diagonal matrix containing the variances of z;. The first Kronecker model (M1) uses the
factorization 2° = 512 and assumes that

O =065 - ® 63,

where ©7 are 2 x 2 correlation matrices. We add a vector of 71 independent pseudo variables
ug ~ N (0,Ir1) such that n + 71 = 2% and then extract the upper left (n x n) block of ©* to
obtain the correlation matrix of ;.

Again we adopt the first approach of estimation to estimate original parameters directly.
The estimation is done in two steps: First, D is estimated using the sample variances, and then
the original parameters of ©* are estimated by quasi-maximum likelihood estimation using
the standardized returns D~/2z; and pseudo variables u;. Re-ordering the data x; according
to variance in a descending way prior to adding the pseudo variables u; did not improve the
final outcomes, so we keep the original order of the data. We experiment with more generous
decompositions by looking at all factorizations of numbers from 441 to 512, and selecting some
yielding not more than 30 parameters. Table [2] gives a summary of these models.

Next, we follow the approach of Fan et al. (2013) and estimate the Kronecker product
model on windows of size 504 days (equal to two years’ trading days) that are shifted from
the beginning to the end of the sample. The estimated Kronecker product model yields an
estimator of the covariance matrix that is used to construct the minimum variance portfolio
(MVP) weights. The same is done for two competing devices: the sample covariance matrix and
the linear shrinkage estimator of Ledoit and Wolf] (2004). After each estimation, the minimum
variance portfolios constructed by these three models are compared in terms of standard error
using the next 21 days (equal to one month’s trading days) out-of-sample. Then the estimation
window of 504 days is shifted by 21 days, etc. The total number of out-of-sample evaluations
is 106.

The last four columns of Table |2| summarize the relative performance of the Kronecker
MVP with respect to those of the sample covariance matrix and the linear shrinkage estimator
of Ledoit and Wolf (2004). We consider two criteria: Impr and Prop. Impr is the average
of standard error improvements (in percentage) and Prop is the proportion of the times (out
of 106) that the Kronecker MVP outperforms a competing MVP. All models outperform the
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Sample Cov  Ledoit-Wolf

Model p Decomp Impr Prop Impr Prop
Ml 9 512=29 30% 092 8% 0.84
M2 16 486 =2x3° 32% 092 0% 0.50
M3 17 512 =2° x 42 32% 092 11% 0.94
M4 18 480=2°x3x5 33% 0.92 -2% 0.39
M5 25 512=4%*x2 34% 092 13% 0.94
M6 27 448 =26x7 35% 0.92 -30% 0.09

Table 2: Summary of Kronecker product models for the correlation matriz of (xf,u])T. p is the number

of original parameters in a Kronecker product model. Decomp is the factorization used for the full
system including the additional pseudo variables. Prop is the proportion of the times that the Kronecker
MVP outperforms a competing MVP (generated by the sample covariance matriz, or the Ledoit- Wolf

estimator), and Impr is the average of standard error improvements (in percentage).

sample covariance matrix, while models with smaller dimensional sub-matrices (i.e., M1, M3 and
M5) tend to outperform the shrinkage estimator. The reason could be that it is more difficult
to ensure positive definiteness of a bigger sub-matrix in the constrained maximum likelihood
optimisation.

7 Conclusions

We have established the large sample properties of our estimation methods of Kronecker product
models in the large dimensional case. In particular, we obtained norm consistency and the large
dimensional CLTs. The Kronecker product model outperforms the sample covariance matrix
theoretically, in a simulation study, and in an application to portfolio choice. It is possible to
extend the framework in various directions to improve performance. One may also consider the
case where both n; and v increase with the sample size.

A Appendix
Al

Proposition A.1. Suppose that
0"=01060,8 - 06,

where 9;‘7 is nj X nj dimensional such that n = ny-ng---n,. Taking the logarithm on both sides
gives

log©* =10g@i @ I, @ @ I, + I, @log@3 @ Iy, @ -+~ @ Iy, + -+
+1,, @I, ® - ®logO;.

For identification we set the first diagonal entry of log ©7 to be 0 for j =1,...,v—1. In total
there are

s:zznj(ng—’_l)—(v—l)
j=1

(identifiable) parameters in log ©7, ..., log O%; let 6* denote these. Then there exists a n(n +
1)/2 x s full column rank matriz E such that

vech(log ©*) = E6*.
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Proof. Note that

log@* =1log® @ I, ® - @ I, + Iy, @log@3 @ [, @ -+~ @ Iy, + -+ -

Then
vech(log ©7)
vech(log ©®*) = [ By E, " } Vech(lzog 1) ,
vech(l;)g o)
where fori=1,...,v

E;:= D,: [LnnznZ ® Kn/(nlvn2~~~ni),n1-n2~~-ni ® In/(nlngm)] [I(nl-ng---ni)Q ® vec In/(nlngnz)] :
(Inyna-mis @ Knynyongoomi—y @ Ing)(vee Inyngeom; .y ® In?)Dnm (A1)

where D is the Moore-Penrose generalised inverse of D,, i.e. D} = (D}D,)"'D}, D,
and D,,, are the n? x n(n + 1)/2 and n? x n;(n; + 1)/2 duplication matrices, respectively,
and Ky, /(nyno-ni)ning-n; ad Kn; nyny.m;_, are commutation matrices of various dimensions.
When i = 1, the term (In;ny-n;—y @ Knyniongemi—y @ Ing)(vee Inynyom;_y ® I2) in is set

to be 1. To see this, we first consider vec(log @] @ I, ® -+ @ I,,).
vec(log ©] ® In, ® -+ ® Ip,) = vec(log O] @ I, ., )
= (Inl @ Koy ny @ In/m) (
= (Im ® K fnyny @ In/nl) (Inf vec(log ©1) ® vec Iy 1)
= (In; ® Kppjny iy ® Iyjny) (I 2 @ vec I, ) vec(log ©7),

vec(log ©7) ® vec In/m)

where the second equality is due to |[Magnus and Neudecker| (2007) Theorem 3.10 p55. Thus,

VeCh(log @T QIn, ®:-- ®Inv) = DZ (Inl ® Kn/m,m ® In/m) (IN% ® vec In/nl) D, VeCh(log @T)
(A.2)
We now consider vec(I,, ®log03® ---® I,,,).
vec(In, ®logO3 @ -+ - @ Ip,) = vec(Ip, ®1og O3 @ I, /(n1.n,))
= (Inyny ® Kn/(m-nz),m-nz ® In/(m-nz ) (VeC(Im ® log ©3) ® vec In/(m nz))
= (Inl"n«2 ® Kn/(nyng),nl‘ng ® In/(nl-ng ) ( (n1-n2)? ® vec In/(nl nz)) VeC(Inl ® 10g® )
= (Inyny ® Kn/(m-nz),m-nz ® In/(m-nz)) (I(nrm)2 ® vec In/(m-nz)) ’
(In; @ Ky ny @ I, ) (vec I, @ veclog(©3))
= (Inl‘nz ® Kn/(nl-nz),nl-ng b2 In/(nlng)) (I(n1~n2)2 & vec In/(nlng)) .
(In; ® Knyny ® Iny)(vec In, ® I,2) veclog(©3).

Thus

vech(I,, ®logO5 ® -+ ® I,,)
= Dv—i—([m-m ® Kn/(n1~n2),n1~n2 ® In/(n1~n2)) (I(m-ng)2 ® vec In/(nl-ng)) :
(Iny ® Knyny ® Iny)(vec In; ® I,2) Dy, vechlog(©3). (A.3)
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Next we consider vec(I, ® I, ®log@3 @ -+ ® I, ).

vec(ly, @ In, ®10g O3 @ -+ ® Iy,) = vec(Iny.my, @108 O3 @ Iy /(n) mons))
= (Inynyng @ Kpj(ningms)ninens @ Injnynomns)) (vec(Ip, ny ® log ©3) @ vec In/(nl.m,ns))
= (Inynans ® Ky j(nymons)minons @ Injnimans)) (I(n1~n2~n3)2 ® vec In/(n1~n2-n3)) vec(Ip,.n, ® log©3)
= (Inynans ® Ky jnynams)ninens @ Injmimngns)) (I(n1~n2~n3)2 ® vec In/(nl_nzm)) .
(Inyms @ Kng nyne @ Ing)(vec I, ., @ vec(log ©3))
= (Iny-nans ® Ko jnyngng)ma-nans © Injmrnsng) Lngnamns)? @ Ve€ Ly iy msmg)) -
(ny-ny ® Kz nyny ® Ing)(vec In, ., ® I2) vec(log ©3).

Thus

vech(l,, ® I, ®logO3 @ --- @ I,)
= D:(Inl-n?ns ® Kn/(n1~n2-n3),n1~n2~n3 ® In/(nl'ngmg)) (I(nl-ng-ng,)2 ® vec In/(nyng%g)) :
(Ini-ny ® Knginyny ® Ing)(vee Iny.ny ® I2) Dpy vech(log ©3). (A.4)

By observing (A.2)), (A.3) and (A.4), we deduce the following general formula: for i =1,2,... v

vech(l,, ® -+ - ®1logO; @ ---® Ip,)

= D [Inyngni © Kpjinyong-mi)mi-ngeni @ Injningn)] Hngng-ni? @ Vee I jny mgeny ] -
(nyny-mioy @ K nyngeomi_y ® Ing ) (vee Iny gy @ I2) D, vech(log ©57)

=: E; vech(log ©}), (A.5)

where E; is a n(n + 1)/2 x n;(n; + 1)/2 matrix. When ¢ = 1, the term ([, myom;_; ®
Ko ningmsy @ In,)(vec Iy pg.om;, ® I,2) in Ej is set to be 1. Using li we have

vech(log ©*) = Ej vech(log ©7) 4+ E3 vech(log ©3) + - - - + E;, vech(log ©3)

vech(log ©7)

vech(log ©%

—| B B - Ev] (. 2)
vech(log ©%)

For identification we set the first diagonal entry of log ©7 to be 0 for j =1,...,v — 1. In total

there are .

S::an(n;—l-l)_(v_l)
j=1

identifiable) parameters in log ©7,...,log ©F; let 6* denote these. Then there exists a n(n +
1 v

1)/2 x s full column rank matrix E such that
vech(log ©*) = Ef*,

where
E=| Eiy By - By Bo

and E; (_1) stands for matrix E; with its first column removed. O

Proposition A.2. Given thatn = ny-ng - --ny, the s X s matrix ETE takes the following form.:
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(i) Fori=1,...,s, the ith diagonal entry of ETE records how many times the ith parameter
in 600 has appeared in vech(log ©°). The value depends on to which log @9 the ith parameter
in 0°, 09, belongs to. For instance, suppose 09 is a parameter belonging to log ©3, then

(ETE)Z'J' = n/ng.

(ii) Forik=1,...,s (i # k), the (i,k) entry of ETE (or the (k,i) entry of ETE by symmetry)
records how many times the ith parameter in 6°, (9?, and kth parameter in 6°, 92, have
appeared together (as summands) in an entry of vech(log®Y). The value depends on to
which log @? the ith parameter in 69, 9,?, and kth parameter in 6°, 02, belong to. For

instance, suppose 9? is a parameter belonging to log @g and 92 s a parameter belonging to
log ©F, then

(ETE)i,k = (ETE)]C’Z = n/(n3 . n5).
Note that if both 69 and 6% belong to the same log @9, then (ETE);, = (ETE),; = 0. Also
note that when 09 is an off-diagonal entry of some log @?, then

(ETE)ir = (ETE)r; =0
foranyk=1,...,s (i # k).

Proof. Proof by spotting the pattern. O

We here give a concrete example to illustrate Proposition

Example A.1. Suppose that n1 = 3,n0 = 2,n3 = 2. We have

0 a a
los Q0 — RN log ©0 — 0 bip log @ — [ €Ll L2
0go; = ai2 az2 a3 0g By = bio boo 0og = Clo Cas
a1,3 G23 0a33 ’ ’ ' ’

The leading diagonals of log ©) and log ©Y are set to zero for identification as explained before.

Thus

0
0" = (a12,013,a22,a23,a33,b12,b22,c1.1,¢1,2,C22)7.

Then we can invoke Proposition[A.9 to write down ETE without even using R code to compute
E; that is,

400 00O0O0O0O0OO
04000O0O0O0O00O0
0040002220 2
000 4000O0O0O0°0O0
000040220 2
ETE = 000O0OG®G6GO0OO0O0O
002020¢6 303
002020346 00
000 O0O0OOO0OO®G6O0
0020203006
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A.2

In this section of appendix, we show that for any given n x n real symmetric, positive definite
covariance matrix (or correlation matrix), there is a uniquely defined member of the Kronecker
product model that is closest to the covariance matrix (or correlation matrix) in some sense in
terms of the log parameter space, once a factorization n = nj - - - n, is determined.

Let M,, denote the set of all n x n real symmetric matrices. For any n(n+1)/2xn(n+1)/2
known, deterministic, positive definite matrix W, define a map

(A, B)w := (vech A)TW vech B A, B eM,.

It is easy to show that (-,-)y is an inner product. M, with inner product (-,-)y can be
identified by R™"*1)/2 with the usual Euclidean inner product. Since R™"+1)/2 with the usual
Euclidean inner product is a Hilbert space (for finite n), so is M,,. The inner product (-, )w
induces the following norm

|Allw := (A, A)w = +/(vech A)TW vech A.

Let D,, denote the set of matrices of the form

Ql®1m®"'®lnv+]n1®Q2®"'®Inv+"‘+ln1®"'®Qva

where §2; are n; x n; real symmetric matrices for j = 1,...,v. D, is a (linear) subspace of M,,
as, for a, 8 € R,

a(Ql®In1®"’®Inv+In1®Q2®"'®Inv+"'+ln1®"'®Qv)+
/B(El®fn1®"'®Inu‘|‘In1®E2®"'®Inu+"'+In1®"'®5v)

= +021)@ L, @ @In, +1In @ (a4 BE2) @ - @Ip, + -+ In, @ @ (afdy + BEy)
€ D,.

For finite n, D,, is also closed.

Consider a real symmetric, positive definite covariance matrix 3. log>» € M,. By the
projection theorem of the Hilbert space, there exists a unique matrix L° € D,, such that

log¥ — Ly = min ||log % — L]l

| log lw = min |[log lw

Note also that log 2~ = —log &, so that —L? simultaneously approximates the precision matrix
¥~!in the same norm.

This says that any real symmetric, positive definite covariance matrix ¥ has a closest ap-
proximating matrix 3° in a sense that

|log ¥ —log X°||w = min || log ¥ — L||w.
LeD,

That is, log 2% = L°. Since LY € D,,, we can write
LO:L?@)Im®“‘®Inv+Im®Lg®‘“®Inv+"'+Im®"'®L10n
where Lg-) are n; x n; real symmetric matrices for j = 1,...,v. Then
»0 = exp L°
:eXp[L[l)@)Inl®"'®Inv+In1®Lg®"'®Inv+'“+In1®"'®L2]
=exp [L{® 1, ® @Iy, xexp [, ®LY® - @ Ip,] x -+ xexp [I, ® -+~ @ L]
= [exp(LY) ® I, @ -+ ®@ I, ] % [In, @ exp(LY) @ -+ ®@ I, | X -+ x [I, ® - @ exp(LY)]
= exp(LY) ® exp(L) @ - @ exp(Ly)
— 2?@...@23’
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where the third equality is due to Theorem 10.2 in Higham/ (2008) p235 and the fact that
el ® - ®I,, and I,, ® LY® - -+ ® I,,, commute, the fourth equality is due to f(A)® I =
f(A®I) for any matrix function f (e.g., Theorem 1.13 in Higham| (2008)) p10), the fifth equality
is due to a property of Kronecker product, and 29 is real symmetric, positive definite n; x n;
matrix for j =1,...,v.

We thus see that X0 is of the Kronecker product form, and that its precision matrix £~! has
a closest approximating matrix (3°)~!. This reasoning provides a justification (i.e., interpre-
tation) for using X° even when the Kronecker product model is misspecified for the covariance
matrix. The same reasoning applies to any real symmetric, positive definite correlation matrix
0.

van Loan (2000)) and [Pitsianis| (1997) also considered this nearest approximation involving
one Kronecker product only and in the original parameter space (not in the log parameter
space). In that simplified problem, they showed that the optimisation problem could be solved
by the singular value decomposition.

A.3
Lemma A.1. Suppose Assumptions[3.1)(i) and[3.3(i) hold. Then

~ n
X7 — Zlle, = Op ( T> -

Proof. Write X = % Zthl xpx] — zZT. We have

+ 1227 — ppT e - (A.6)

T
A 1
157~ Ell, <|| 7 3 el - Boia]
t=1 lo

We consider the first term on the right hand side of ({A.6)) first. Invoke Lemma in Appendix
with e = 1/4:

T T
1 1
T T T T T
— rix;, — Exgx <2 max |a < rx; — Exx > a
1 T
=:2 max |— 22 Ez?2 ,
a€N1/4 TZ( a,t a,t)

where 2z, := x]a. By Assumption (i), {2a4}L_, are independent subgaussian random vari-
ables. For € > 0,
P(|23 4| > €) = P(|z0] > Ve) < Ke .

We shall use Orlicz norms as defined in van der Vaart and Wellner| (1996)): Let ¢ : Rt — R*
be a non-decreasing, convex function with ¢(0) = 0 and lim,_,« ¥ (z) = 0o, where RT denotes
the set of nonnegative real numbers. Then, the Orlicz norm of a random variable X is given by

|X|],, = inf {c > 0: By (|X]/C) < 1},

where inf () = co. We shall use Orlicz norms for 1 (x) = 1,(z) = e*" —1 for p = 1,2 in this paper.
It follows from Lemma 2.2.1 in [van der Vaart and Wellner (1996) that [|z2,[|y, < (1+ K)/C.
Then
21+ K)

o

Then, by the definition of the Orlicz norm, E [ecﬂ%QKﬂZit_Ezit‘] < 2. Use Fubini’s theorem
to expand out the exponential moment. It is easy to see that zg’t - ]Ezg,t satisfies the moment

22 = Ezg illyy < llzgilloy + Ellzglly, <
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2
conditions of Bernstein’s inequality in Appendix |A.5| with A = 2(1;[() and o3 = 8(12‘52}( )~ Now

invoke Bernstein’s inequality for all € > 0

T
1
P (‘T Z(Zg,t - Ezz,t) >

t=1

od [Ae + \/2}) < 2¢~To0e,
Invoking Proposition [A.§ in Appendix we have

T
1 2 2 log ‘N1/4‘ log ‘N1/4|
TZ(Z(LIS ) :Op < T v T .

t=1
Invoking Lemma in Appendix we have [N /4l £ 9" Thus we have
1 & T n n
T T _
HT ;xtxt —Exzf|| < 2;;1}\%}1);4 ;(zat )| =0, <T v T)

o)

where the last equality is due to Assumption (1) We now consider the second term on the
right hand side of ({A.6)).

2 max
a€N1/4

1227 = puTlle, = 1227 — paT + pa® — pptlle, <2 max

a’ (x:cT — pxT + px’ — pp )

1/4
= 2arenj\z%1>§4 a’ <(a‘c — )T + p(z — M)T> < 2ar€n/\z%1>§4‘aT T — p)za| + 2arenj\z%1>§4‘aT (@ — p)7al
<2 max |o7(7 = p)| max [7Ta] +2 max |aTu| max |(@ - p)Tal.

We consider maxa€N1/4‘(j — p)Tal first.
T 1z
e =Tl = w772 (ed — Bleal)] = e [ 722 (et =B

By Assumption (i), {244}l are independent subgaussian random variables. For € > 0,

P(|zq] > €) < Ke ¢ Tt follows from Lemma 2.2.1 in [van der Vaart and Wellner (1996) that
1/2

Iz dllys < (1+ F)Y2/CV2. Then |lzas — Ezally, < llzatllu, + Ellzally, < *0E50=. Next,

using the second last inequality in van der Vaart and Wellner (1996) p95, we have

1/2
/2 < 2(1+ K)Y (log2)~1/2 — 1

c1/2 W

Then, by the definition of the Orlicz norm, E [eW‘ZW_EZaﬂ”] < 2. Use Fubini’s theorem to
expand out the exponential moment. It is easy to see that zat Ez,, satisfies the moment
conditions of Bernstein’s inequality in Appendix with A = W and o2 = % Now invoke
Bernstein’s inequality for all € > 0

1 T
P <‘ T ;(za,t — Eza,t)

Invoking Proposition in Appendix we have

log |N1/4| log |N1/4|
- o, ((osll, [oRTRLAT)

27

20,6 = Bzapllyy < llza0 — Ezatlly, (log2)™

> 0(2) [Ae + \/i}) < 2¢~ T8¢,

T

1
T Z(Za,t - Eza,t)

t=1

max
a€N1/4




Invoking Lemma in Appendix we have [N /4l £ 9" Thus we have

g |7~ p)Ta| = O, (; v \/§> — 0, (ﬁ) , (A7)

where the last equality is due to Assumption ( ). Now Let’s consider max,en;, /a ‘a u‘

Tu| =: EaTz| = E < E =
g o] = ma [BaTeo| = mox [Bzor] < max Blzadl = max llzalle,
_ 1+ K)'/? _
< < log2)~1/2 < BHEVT g oy-172
< e _aglﬁina,tsz(og ) S (log2)~ "/,
where || - ||z, is the L; norm, the second and third inequalities are from [van der Vaart and
Wellner| (1996)) p95. Thus we have
max |aTu| = O(1). A8
ae fo4| pul=0(1) (A.8)
Next we consider max,en;, /a ‘aT:ﬂ.
n
max |a"zZ| = max [aT(T — p+ max [a'(Z — pu)| + max |aT — |+ 0(1
B 31 = g o = 0] < e @+ s ol = 0 (7 ) + 000
= Op(1), (A.9)

where the last equality is due to Assumption (1) Combining (A.7)), (A.8) and (A.9), we have

n

1227 — ppTe, = Op < T) :

Proposition A.3. Suppose Assumptions[3.1)(i),[3.4(i) and[3.3(i) hold. Then

(i)
D2~ Dl =0, (1/2):

(i) The minimum eigenvalue of D is bounded away from zero by an absolute positive constant
(i.e., | D e, = O(1)), s0 is the minimum eigenvalue of DY/? (i.e., | D=2, = O(1)).

(ii)
~ n
D2 = D2, = 0, (/7).
A _ n
572 =Dl = 0, (|/2).

1D ||, = O,(1).

(iv)

(v)

(vi) The mazimum eigenvalue of ¥ is bounded from the above by an absolute constant (i.e.,
|1Z]le, = O(1)). The maximum eigenvalue of D is bounded from the above by an absolute
constant (i.e., || D¢, = O(1)).
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(vii)
. . n
|1D7'? @ DyV? = D72 @ D2, = O, ( T> '
Proof. Define 02 := E(x;; — 0;)? and 67 = %E;‘le(xt,i — 7;)?, where the subscript i denotes
the ith component of the corresponding vector. For part (i),
. 9 9 . .
1Dy~ Dlle, = s |57 — 07| = max e (7 — D) < max a7 (Sr ~ D)a

= HET - EH&?

where e; denotes a unit vector whose ith component is 1. Now invoke Lemma to get the
result. For part (ii),

mineval(D) = min 07 = min e]Ye; > min aYa = mineval(X) > 0
1<i<n 1<i<n llalla=1

where the last inequality is due to Assumption For part (iii), invoking Lemma in
Appendix gives

N ||BT - DH€2 ) i
HDl/g—Dl/sz < - =0 (1)HDT—D”g =0 - |
r ’ mineval(D;/ 2) + mineval(D1/2) ’ 2 ’ s

where the first and second equalities are due to parts (ii) and (i), respectively. Part (iv) follows
from Lemma in Appendix via parts (ii) and (iii). For part (v),

~—1/2 ~—1/2 _ _ ~—1/2 _ _
1D7 e, = |1 D7 = DV2 4 D2, < |12 = DY, + | D7V,

~=0, <\/§> +0(1) = 0,(1).

For part (vi), we have

1Z]le, = maxl‘aT (Elzix]

llal J = puT) o] < max ]Ezg,t + max (Ezey)® < 2 max Ezg,t.
al|a=

llall2=1 llall2=1 llall2=1

We have shown that in the proof of Lemma that [|z2,]y, < % for any ||a|lz = 1. This

says that 237t has bounded exponential moments, so the result follows. Next we consider

|D||¢, = max 67 = max e]Ye; < max a"¥a = maxeval(X) < co.
1<i<n 1<i<n lalla=1

For part (vii),
171 @ Dy — D2 @ DT,

— ||D;1/2 ® D;l/z _ D;l/z © D-1/? +f);1/2 @ D2 _ p-\2g pi2),

A—1/2 _ A—1/2 _ n
= (1072l + 107216 1972 = D201, = 0, (/7).
where the second equality is due to Proposition in Appendix O

Proof of Proposition[3.1](i). Recall that

6r = D;?srD7?, @ =D V?sp 12

29



Then we have
|67 ~ Olle, = D7 *Sr Dy * — Dy *8Dy ' 4 Dy P8 Y? - 71 2ED 2,
< 1Dz 2, |18x = Slley + 11D * D7 * = DTAEDTV),. (A.10)
Invoking Lemma and Proposition [A.3|v), we conclude that the first term of (A.10) is
O,(y/n/T). Let’s consider the second term of (A.10). Write
|D;'*2D? — D Y22DM? + V2D VP - pV2ED 2,
< |[(D7'"* = D7V28D; Py, + | DTVPE(D Y — D)
A—1/2 A—1/2 - - A—1/2 -
< 107 61 Zle | D = D72, + [D7 2 |S ]| D72 = D72l
Invoking Proposition [A.3(ii), (iv), (v) and (vi), we conclude that the second term of (A.10) is

0,(\/n/T). O

To prove part (ii) of Proposition we shall use Lemma 4.1 of |Gil’| (2012). That lemma
will further simplify when we consider real symmetric, positive definite matrices. For the ease
of reference, we state this simplified version of Lemma 4.1 of |Gil’| (2012) here.

Lemma A.2 (Simplified from Lemma 4.1 of |Gil’ (2012))). For n x n real symmetric, positive
definite matrices A, B, if
|A = Blle, <a,

for some absolute constant a > 1, then
[log A —log Bllg, < Cl|A = Blle,,
for some positive absolute constant C.

Proof. First note that for any real symmetric, positive definite matrix A, p(A,z) = x for any
x > 0 in Lemma 4.1 of |Gil’ (2012). Since A is real symmetric and positive definite, all its
eigenvalues lie in the region |arg(z —a)| < 7/2. Then according to Gil’ (2012) p11, we have for
any t >0

p(A,—t) > (a+t)sin(r/2) =a+t
p(A,—t) =0 >a+t—4,
where
|A =Bl if A~ B, <1
d = 6! bt =
|A—=Blle, if[[A—=Blle =1
and p(A, —t) is defined in |Gil’ (2012). Then the condition of Lemma allows one to invoke

Lemma 4.1 of |Gil’ (2012) as
p(A,—t) >a+t>a>0.

Lemma 4.1 of |Gil’| (2012) says

o0 1 1
log A —log B <||A—- B A — B —
J10g A ~1og Ble, < |14~ Bl | p( vmm—w>p< Vm&_ﬂ_é)ﬁ
—lA-B]| /OO 1 L w<ja-n| /oo 1 dt
N “Jo p(A, =) p(A,—t) =0 = “Jo @+t)a+t—2a)

& 1 1
<|A-B ————dt=||A— Bllp,—— =: C||A — Bl|e,-
<I4=Bl, | =gyt = 14— Bl = ClA=Bll,
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Proof of Proposition ( i1). It follows trivially from Lemma O
Proof of Proposition [3.1)(iii). We have

167 = 81> = [|(ETW E) "' ETW |5, | D;f ||, || log ©7 — log ©||»

< [(ETWE)"'ETW ||, /|| log ©1 — log ©|le, = O(v/@r(W)/n)v/nOp(v/n/T)

:0p< Tm(w/))’

T
where the first inequality is due to (A.13)), and the second equality is due to (A.19)) and parts
(i)-(ii) of this proposition. O
A4

The following proposition linearizes the matrix logarithm.

Proposition A.4. Suppose both n X n matrices A+ B and A are real, symmetric, and positive
definite for all n with the minimum eigenvalues bounded away from zero by absolute constants.
Suppose the mazimum eigenvalue of A is bounded from above by an absolute constant. Further

suppose
[[t(A=1)+1]""tB||,, <C <1 (A.11)

for all t € [0,1] and some constant C. Then

log(A + B) —log A = /l[t(A — 1)+ I]7'B[t(A— 1)+ I]"'dt + O(| B||}, V | BIIZ,)-
0

The conditions of the preceding proposition implies that for every ¢ € [0,1], t(A— 1)+ I is
positive definite for all n with the minimum eigenvalue bounded away from zero by an absolute
constant (Horn and Johnson (1985) p181). Proposition has a flavour of Frechet derivative
because fol [t(A—1)+I]7'B[t(A —I)+ I]~'dt is the Frechet derivative of matrix logarithm at
A in the direction B (Higham| (2008]) p272); however, this proposition is slightly stronger in the
sense of a sharper bound on the remainder.

Proof. Since both A + B and A are positive definite for all n, with minimum eigenvalues real
and bounded away from zero by absolute constants, by Theorem in Appendix we have

log(A—i—B):/01(A+B—I)[t(A+B—I)+I]_1dt, 1ogA:/Ol(A—I)[t(A—I)—i—I]_ldt.

Use to invoke Proposition in Appendix to expand [t(A — I) + I +tB]~! to get
HA-D)+I+tB ' =[tA-D)+I"'—t(A-I)+ 1] 4BtA-I)+ 1" +O(|Bl3,)

and substitute into the expression of log(A + B)

log(A + B)

- /1(A +B=D{[(A 1)+ 17" = (A= 1)+ [BA = 1) + 117"+ O(| BI,) } dt
0

= logA—i—/OlB[t(A—I) + 1) tdt — /Olt(A—irB—I)[t(A—I) +17'Blt(A —I) + 1] tat
+(A+B—-DO(|BIZ,)

=log A+ /Ol[t(A — D)+ 17 'B[t(A— 1)+ I tdt — /01 tBlt(A—1T)+ I 'B[t(A - 1)+ I dt
+(A+ B —-DO(|BIZ,)

1
:logA+/ t(A—1)+I]7'Bt(A—1)+ 1) 'dt+ O(| B||7, V || BlI3,),
0
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where the last equality follows from maxeval(A) < C' < oo and mineval[t(A — I) + I] > C’ >
0. O

Proposition A.5. Suppose Assumptions[3.1)(i),[3.9(i) and[3.9 hold.

(i) © has minimum eigenvalue bounded away from zero by an absolute constant and mazimum
etgenvalue bounded from above by an absolute constant.

(ii) Or7 has minimum eigenvalue bounded away from zero by an absolute constant and maxi-

mum eigenvalue bounded from above by an absolute constant with probability approaching
1.

Proof. For part (i), the maximum eigenvalue of © is its spectral norm, i.e., ||O|¢,.
1Olle, = I1D~2£D 72|y, < IDTIIZ, 2], < C,

where the last inequality is due to Proposition [A.3[(ii) and (vi). Now let’s consider the minimum
eigenvalue of O.

mineval(©) = mineval(D~/22D7?) = min «"D7V?SD" Y24 > min mineval(X)|| D~ 2a|2

llalla=1 llallz=1
. . _1 : , 1 mineval(X)
= mineval(¥X) min a"D™"a = mineval(X)mineval(D™") = ————= > 0,
lall2=1 maxeval(D)

where the second equality is due to Rayleigh-Ritz theorem, and the last inequality is due to
Assumption and Proposition (vi). For part (ii), the maximum eigenvalue of © is its
spectral norm, i.e., ||©||s,.

N ~ n
ril <107~ Ol + 011 = 0, 1/ 7) + 1l1a = 0,1

where the first equality is due to Proposition [3.1fi) and the last equality is due to part (i). The
minimum eigenvalue of ©7 is 1/maxeval(©7'). Since |[©~!||,, = maxeval(©~!) = 1/mineval(0) =
O(1) by part (i) and [|©1 — O||g, = O,(1/n/T) by Proposition (i), we can invoke Lemma
in Appendix to get

107" =07 e, = Op(V/n/T),

whence we have

107 lle, < 107! = O e, + 1107 [ley = Op(1).-

Thus the minimum eigenvalue of Or is bounded away from zero by an absolute constant. [

Define 1
Ay e / H(Or — 1)+ 17" @ [t(Or — T) + 1] \dt.
0

The following proposition gives the rate of convergence for Hy. The following proposition is
also true when one replaces Hr with Hr p.

Proposition A.6. Let Assumptions(3.1(i), [53.9(i) and[3.3 be satisfied. Then we have

~ ~ n
Hl =00, e, = 0,0, - Hle =0, (\/7).  (a12)
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Proof. The proofs for ||H||,, = O(1) and HHTHg2 =0 ( ) are exactly the same, so we only give
the proof for the latter. Define A; := [t(Or —I) +I]~! and B, := [t(© — I) + I]~*

1
\Er e, :H/ Ay ® Aydt
0

1
g/ i Al dt < a4 @ 4,
12 0

—ma A
max X H ll,

le

R 1 2
= max {maxeval([t(O — I) + I1"1)}? = max { ~ }
1€, 1}{ (HOr = 1)+ 117} t€[0,1] { mineval(t(©r — I) + 1)

= Op(l)v

where the second equality is due to Proposition in Appendix and the last equality is
due to Proposition (ii). Now,

1
| Er — H|g, :H/ Ay ® Ay — By ® Bydt

1
< / |4 ® A, — By @ By, dt
> 0

< max ||At QR A — B ® Bt”g = max HAt QA —A B +A, 3B, — B ® Bt”ﬁ
te[0,1] 2 telo,1) 2

le,)

:tren[g}li HAt@ At )+(At_Bt)®BtHZ < maX (HAt@ At Bt)HZQ—FH(At—Bt)(@Bt
= max (1At 1As = Belly, + [1A: = Bl HBtHzg) = max A — Btlly, ([ Atll, + [ Btll,,)
= 0,(1 tOp—D+I1"' =[O 1)+ 1"

0p(1) gma |16(®7 — 1)+ 117! ~ (@ — 1)+ 71|

where the first inequality is due to Jensen’s inequality, the third equality is due to special
properties of Kronecker product, the fourth equality is due to Proposition in Appendix
and the last equality is because Proposition implies

lt©r = D)+ 1] e, = Op(1)  [[t(© = 1) + 1] Y|, = O(1).

Now
|t®r — D+ 1)~ [t© ~ D+ 1), =467 - Olle, = Op(V/n/T),

where the last equality is due to Proposition (1) The proposition then follows after invoking
Lemma in Appendix O

Proposition A.7. Given the n? x n(n + 1)/2 duplication matriz D,, and its Moore-Penrose
generalised inverse DY = (D} D)~ D}, (i.e., D,, is full-column rank), we have

1D lle, = 1D5Tlle; =1, [[Dalle, = 1D}, = 2. (A.13)

Proof. First note that D} D,, is a diagonal matrix with diagonal entries either 1 or 2. Using the
fact that for any matrix A, AAT and ATA have the same non-zero eigenvalues, we have

| D717, = maxeval(D;f D7) = maxeval((DID,) ") =1

(Dy,
IDEI, = sl D57D3) = sl D5 D3T) = sl (D37 =
(D} Dn) =
|D}||7, = maxeval(D, D]) = maxeval(DTD ) =2
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Proof of Theorem[3.1. We first show that (A.11) is satisfied with probability approaching 1 for
A =0 and B =07 — 0. That is,

1[t(© = 1)+ 1] (61 —O)|l, <C <1 with probability approaching 1,
for some constant C.
I[t(© = I) + I 'O — ©)|le, < t|[H(© — I) + 17|, |O1 — B¢,
= I[t(© = I) + 117 [6,0p(v/n/T) = Op(\/n/T) /mineval (t(© — I) + I) = 0,(1),

where the first equality is due to Proposition [3. ( ), and the last equality is due to mineval(¢(© —
I)+1) > C > 0 for some absolute constant C' (implied by Proposition [A.5{i)) and Assumption
3:2(i). Together with Proposition [A.5{ii) and Lemma 2.12 in [van der Vaart (1998), we can
invoke Proposition stochastically with A = © and B = Or — 6:

1ogéT—1og@:/Ol[t(@—f)+1]—1(éT_@)[t(@-])+1}—1dt+op(|yéT—@||§2). (A.14)

(We can invoke Proposition stochastically because the remainder of the log linearization

is zero when the perturbatlon is zero. Moreover, we have ||©7 — ©|s, 2 0 under Assumption

( ).) Note that 1} also holds with ©r replaced by @T p by repeating the same argument.
That is,

1
log O7.p) — log © — / 1O — 1)+ 11" (Or.p — ©)[H(O — 1) + 11" 'dt + 0,(|Or.0 — OI2).
0

Now we can write
VT (Orp —0°) VT (ETWE) 'ETWD; H(D™Y/? @ D~'/?) vec(Sr — %)

Grp Jéro

. VT (ETWE) "L ETW D vee O, (||©r1,0 — ©|2)

Gr,p
=:ip1+ipa.

Define ~
VI (ETWE) 'ETWD;H(D'/? ® D7'/?)vec(Sr — %)

tp1 =
vGp
. d . .
To prove Theorem it suffices to show tp1 — N(0,1), tp1 —tp1 = o0p(1), and tp2 = 0p(1).

A4l tpy S N1

We now prove that tp; is asymptotically distributed as a standard normal.

VI (ETWE) ™ ETW D} H(D™Y/2 @ D72 vee (4 X0 [(w0 — ) — p)T = Bl — o) (e — )7] )
. Nen
B XT: T=12(ETWE) "\ ETW DS H(D~Y2 ® DY?) vec [(x; — p) (xy — p)T — E(ay — p) (2 — p)7)
=2 =

T
= E UD,T,n,t .
t=1
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Trivially E[Up 7n¢ = 0 and Zthl IE[UéTm’t] = 1. Then we just need to verify the following
Lindeberg condition for a double indexed process (e.g., [Phillips and Moon| (1999) Theorem 2
pl070): for all € > 0,

T
lim ) / Ub 1ndP = 0.
w00 T MU a2}

For any v > 2,

2 2
/ UD,T,n,th = / UD,T,n,t’UDIJL»t
{lUp,1,n,e1>€} {lUp,1,n,t1>€}

2 2
<e 7/ \Uprpnt|"dP < e* "E|Up 1l
{lUp,7n,t|>€}

We first investigate at what rate the denominator v/Gp goes to zero:
Gp = (ETWE) 'ETWD}H(D™ V2@ D~V)\V(D~Y? @ D~YV*)HD}"WE(ETWE) ¢
> mineval(V)mineval(D~! @ D~!)mineval(H?)mineval(D,” D, T)mineval(W )mineval((ETW E)~1)
mineval(V)mineval?(H)
maxeval(D ® D)maxeval(D},D,,)maxeval(W~!)maxeval(ETW E)
S mineval(V )mineval?(H)
~ maxeval(D ® D)maxeval(D] D,,)maxeval(W~1)maxeval(W)maxeval(ETE)

where the first and third inequalities are true by repeatedly invoking the Rayleigh-Ritz theorem.
Note that
maxeval(ETE) < tr(ETE) < s-n, (A.15)

where the last inequality is due to Proposition For future reference
|E|le, = |ET]|e, = /maxeval(ETE) < \/sn. (A.16)

Since the minimum eigenvalue of H is bounded away from zero by an absolute constant by
Proposition (i), the maximum eigenvalue of D is bounded from above by an absolute constant
(Proposition vi)), and maxeval[D} D,] is bounded from above since D}, D,, is a diagonal
matrix with diagonal entries either 1 or 2, we have

\/Tip =O0(/s-n-k(W)). (A.17)

Then a sufficient condition for the Lindeberg condition is:
T3 (sn(W))"/?
| (ETWE) T ETW D H(D Y2 @ DY) vee [(a — ) (e — 1) — E(ay — p) (e — p)T] ‘
= o(1), (A.18)

Y

for some v > 2. Note that

[(ETWE) " 'ETW/2||,, = \/maxeval ((ETWE)-'ETW'/2]" (ETWE)~-1ETW1/2)

= \/maxcval ((ETW E)~-LETW /2 [(ETW E)-LETW1/2]T)

= \/maxeval ((ETW E)~LETW /2 W /2 B(ETW E)-1)

1 1
- 1((ETWE)™1) = S
\/maxeva (( ) ) \/mineval(ETWE) - \/mineval(ETE)mineVal(W)

=0 (V@/n) \/IW s,
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where the second equality is due to the fact that for any matrix A, AAT and ATA have the same
non-zero eigenvalues, the third equality is due to (AT)™! = (A~1)T, and the last equality is due
to Assumption [3.3|(ii). Thus

|(ETWE) " ETW ||, = O(/mn(W)/n). (A19)
We now verify (A.18).
E )cT(ETWE)_1ETWD7‘{H(D_1/2 ® D™Y2) vec (2 — p)(zp — )T — E(zy — p) (@ — p)7]

‘7

< Hc (ETWE)'E'W D, H(D* ® D™Y/2)|[3E||vec [z — ) (¢ — p)T — E(ze — o) (e — )7 ||
O (( )/n) ””)IEth— (xt—u)T—E(xt—u)(art—u)TH}

O ((wr(W)/n)"?) E| |l — — ) lE + [E(ze — ) (ze — )7 p|”

O ((wr(W)/n)/?) 20! (EHwt ) (e = )% + EE(z, — p) (2 — )7I%)

O ((@wr(W)/n)"?) 2By — ) (wr — )71}

O ((wr(W)/n)"?)

v
wr(W)/n)"/?) 27K (n max |(z; — ,u)i(xt—,u)j‘)
1<i,5<n

(e (W)n)"2) E ( max |(z — p)i(a — ;")

1<i,5<n

wkr(W

v/2

(W) ) [, s, [(o = G — |

where the first equality is because of ({A.19)), (A.12)), and Proposition (ii), the third inequality
is due to Loeve’s ¢, inequality, the fourth inequality is due to Jensen’s inequality, and the last

equality is due to the definition of L, norm. By Assumption (i), for any i,5 =1,...,n,
P(|zyiwej] > €) < P(legi| > Ve) + P(|ze3] > ve) < 2Ke™ .

It follows from Lemma 2.2.1 in|van der Vaart and Wellner| (1996)) that ||z ;z¢ ;|4 < (1+2K)/C.

Similarly we have P(|zi| > €) < Ke=C%, 50 |zelly, < |@tilly, (log2)~/2 < [LEK]Y2 (1og 2)~1/2,
Next,

pax |pi| = max [Ezy;| < max Elzyi| = max [|lzeille, < max [lzeilly, = O(1).  (A.20)

Then we have
(e = w)i(ze — wjlley < llzizelly, + pilloeally, + willzeslly, + pin; < C

for some constant C'. Then invoke Lemma 2.2.2 in [van der Vaart and Wellner| (1996])

| max (e = uioe = |

< HC =
max s log(1 +n)C = O(logn).

Since || X||z, < r!|| Xy, for any random variable X (van der Vaart and Wellner| (1996), p95),
we have

Y il
(e — 1) < (A1) D) (e — 1) — y
| max [ = e u)JIHLW_(v-) | max [ = i Mmel O(log”n).  (A.21)

Summing up the rates, we have
T2 (sns(W))?/?

‘E ‘cT(ETI/VE)_1ETI/VD,J{H(D_1/2 ® D™Y?) vec (e — p)(ze — )T = E(we — p) (z — p)7] ’7

1—2

v/2
= T3 (snk(W)) "2 (wr(W)n)"20(log” n) = O <”2 KX(W) -log'n w) -

by Assumption ii). Thus, we have verified (A.18)).
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A.4.2 tD71 - tADJ = Op(].)

We now show that tp 1 — tADJ = 0p(1). Let Ap and Ap denote the numerators of tp and fDJ,
respectively.

Ap Ap _ Vsns(W)Ap Vsne(W)Ap
vGp \/@T’D \/sn/i(W)GD \/SnK(W)G'RD
Since we have already shown in (A.17)) that snk(W)Gp is bounded away from zero by an

absolute constant, it suffices to show the denominators as well as numerators of tp; and t D1
are asymptotically equivalent.

tp1—tp1 =

A.4.3 Denominators of tp; and fDJ

We first show that the denominators of ¢p; and t p,1 are asymptotically equivalent, i.e.,
snr(W)|Gr.p — Gp| = 0,(1).

Define

Grp = (ETWE) *ETWD;} Hy p(D~V 22D V)V(D~Y20 DY) i p D} WE(ETWE) ™ te.

By the triangular inequality: |snx(W)Gr.p — sns(W)Gp| < |snk(W)Gr.p — sns(W)Gr.p| +
|sni(W)Gr.p — snk(W)Gp|. First, we prove [snk(W)Gr.p — snk(W)Gr.p| = 0,(1).

5nl€(W)|GT,D — GT7D|
= sns(W)|c(ETWE) 'ETW D} Hy p(D™Y2 @ D™V V(D72 @ DY) Hy p D} WE(ETWE) te
— (ETWE) 'ETWD;} Hr p(D™Y? @ D™V V(D™Y2 @ DY) Hyr p DT WE(ETWE) "¢
= snk(W)
|(ETWE) *ETW D} Hy p(D™Y2 @ D™Y2)(Vp — VY (D2 @ DY) Hyr p DT WE(ETWE) "L¢|
WV = Vol (D™Y? © D™V2) Hy p D WE(ETWE) ™ 'el]

AN
»
S
X

< s (W)|[Vr = Voo (D7Y? @ DY) Ay p D WE(ETW E) ™ Y¢|3
< sn3k(W)||Vr — Vo (D72 @ DV2)|2 | Hr p |12, |1 DS |12, I|WE(ETWE) ™2,

~ 4,4 2,2 5,4
— Op(8n2l‘§2(W)W)||VT —VHOO _ Op (\/n K (W)STW lOg n > _ Op(1)7

where ||- || denotes the absolute elementwise maximum, the third equality is due to Proposition

)A.3|(ii), Proposition in Appendix |A.5| (A.12)), (A.19), and (A.13]), the second last equality
is due to Proposition in SM and the last equality is due to Assumption (ii). We now
prove snk(W)|Gr,p — Gp| = o0,(1).

an(W)|C~T’T,D - Gp|
= sn(W)|cH(ETWE) 'E"W D} Hr p(D™Y2 @ D~V V(D2 @ DY) Hr p D} WE(ETWE) ™ Le
— (ETWE) 'ETWD}H(D 2@ D"Y\V(D~'?> @ DV )HD"WE(ETWE) (|
< snk(W)|maxeval [(D™Y/2 @ D=Y2)V(D~1/2 @ D~1/?)] {2 |(Hr,p — HYD}"WE(ETWE) |3
+ 2snk(W) (D72 @ D-Y)V(D™V2 @ DY) HD} WE(ETWE) !¢/
N(Hrp — H)D"WE(ETWE) L¢|| (A.22)
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where the inequality is due to Lemma in Appendix We consider the first term of (A.22)
first.

snk(W)|maxeval [(D™Y/2 @ D=Y%)V(D~'/? @ D71/?)] 12 |(Hrp — HYD WE(ETWE)™t¢|3

= O(snr(W))||Hr,p — H|Z,| D |17, |IWE(ETWE) |7,

= Op(snw?*(W)w/T) = 0y(1),
where the second last equality is due to (A.12]), (A.13]), and (A.19), and the last equality is due
to Assumption [3.2[(ii). We now consider the second term of (A.22).
2snk(W)|(D~Y2 @ D™Y2)V(D™? @ D~V HDI WEETWE) ¢/

\(Hr,p — H)DTWE(ETWE)*¢|)»

< O(snw(W))|H e, | Hr,p — Hlleo | Dy (17, W E(ETW E) ™' ¢||3 = O(v/nrt(W)s?w?/T) = op(1),
where the first equality is due to (A.12)), (A.13), and (A.19)), and the last equality is due to As-

sumption(ii). We have proved |sns(W)Gr,p—snk(W)Gp| = 0,(1) and hence |sns(W)Gr.p—
snk(W)Gp| = op(1).

A.4.4 Numerators of tp; and tAD,l

We now show that numerators of tp ; and t p,1 are asymptotically equivalent, i.e.,

Vsnw(W)|Ap — Ap| = o,(1).

This is relatively straight forward.

VTsns(W)|cH(ETWE) ' ETWD H(D™'/? @ D™'/?)vec(Er — £ — E7 + 3)|

= /Tsnx(W)|c/(ETWE) ' ETW D, H(D™'/? @ D™'/?) vec(S7 — S7)|

= /Tsnk(W)|c"(ETWE) ' ETWD;f H(D™Y? © D~/?)vec [(z — p)(z — 1)7]|
< VTsnn (M (EWE) ™ E™W |, | Df ey | Hlley | D2 @ D=2 | vee [(2 — ) (@ — )] [l
O/ Tsnr (W)@ nll(z — 1)@ — 1)
O(y/Tsn(W))y/wr(W) /nn w—u)(i’— THoo
O(\/Tsn?k?>(W)w) 1513};71‘ z— )il = Tsn?k2(W)w)logn/T

~0, <\/log3n : n;ﬁZ(W)W> = 0,(1),

where the third equality is due to (A.12)), (A.13), and (A.19)), the third last equality is due to
(8.20]), and the last equality is due to Assumption (ii).

A

IN

A.4.5 ips=o,(1)

Write A
VT\/sn&(W)cT (ETW E) "' ETW D;f vec Op(||©1,p — ©|[7))

tp2= -
snk(W)Gr,p

Since the denominator of the preceding equation is bounded away from zero by an absolute
constant with probability approaching one by lD and that |snk(W)Grp — snk(W)Gp| =
op(1), it suffices to show

VT snk(W)cT(ETWE) "' ETW D;f vec Op(||O7,p — O|[7,) = 0p(1).
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This is straightforward:

|/ Tsnk(W)cT(ETWE) "' ETW D;! vec Op(||©7,p — ©]|2,)|

< V/Tsnk(W)||cT(ETWE) ' ETWD;! ||2|| vec Op(||O1,0 — O|17,) |2

= O(VTswr(W))[|0,([|67,p — O|IF)IF = O(VTswns(W))[|Op(97,0 — O117,) e,

m) :op< WW) = 0p(1),

= O Tsamn)0,(10r.0 — 017 = 0, (1Y T

where the last equality is due to Assumption [3.2[(i). O

A.5

Definition A.1 (Nets and covering numbers). Let (T,d) be a metric space and fix € > 0.

(i) A subset Nz of T is called an e-net of T if every point x € T satisfies d(x,y) < e for some
y € MN:.

(i) The minimal cardinality of an e-net of T is denote N(e,d) and is called the covering
number of T (at scale ). Equivalently, N (e,d) is the minimal number of balls of radius €
and with centers in T needed to cover T .

Lemma A.3. The unit Euclidean sphere {x € R" : ||z|l2 = 1} equipped with the Euclidean
metric d satisfies for every e > 0 that

€

N(e,d) < <1+2)n.

Proof. See [Vershynin| (2011) p8. O

Recall that for a symmetric n x n matrix A, its 2 spectral norm can be written as: ||Al|¢, =
mameM:l |xTAw\

Lemma A.4. Let A be a symmetric n X n matriz, and let N be an e-net of the unit sphere

{r € R" : ||z||]2 = 1} for some e € [0,1). Then

1
[Alle, < 1 oe hax |zT Az|.

Proof. See [Vershynin| (2011) p8. O

Theorem A.1 (Bernstein’s inequality). We let Z1,..., Zp be independent random variables,
satisfying for positive constants A and o}

T
1 !
EZ, =0 Vi, TE E|Zt|m§%Am_203, m=23,....
t=1

Let € > 0 be arbitrary. Then

1 T
Pq Z
T;t

> O’% [Ae + @}) < 2¢~ T8¢,
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Proof. Slightly adapted from |[Bithlmann and van de Geer| (2011) p487. O

We can use Bernstein’s inequality to establish a rate for the maximum.

Proposition A.8. Suppose via Bernstein’s inequality that we have for 1 <i <n

1 T

> 0(2) [Ke + \/2>6]) < 2¢~Taie,

Then

1 <& logn logn

= Ziil =0 Vv .

T ; i ( T T >

Proof. We need to use joint asymptotics n, T — oco. We shall use the preceding inequality with

¢ = (2logn)/(To3). Fix e > 0. These exist N; := 2/e, T. and M, := max(4K,40¢) such that
for all n > N. and T' > T, we have

| 1
' ZME<O§nV Ofﬁ))

| 7
< ZP (‘TZZ“

max
1<i<n

2
> 0'(2) [Ke—l— \/Z]) < gelogn—2logn _ = o

i=1 t=1 "
O
Lemma A.5. Let A, B be n X n positive semidefinite matrices and not both singular. Then
1A% — B,
A— Bl < 2 .
| le. < mineval(A) + mineval(B)
Proof. See Horn and Johnson (1985) p410. O

Lemma A.6. Let O, and , be invertible (both possibly stochastic) square matrices whose
dimensions could be growing. Let T be the sample size. For any matriz norm, suppose that
101 = 0,(1) and |4 — Q|| = Oplanr) for some sequence anr with anr — 0 as n — oo,
T — oo simultaneously (joint asymptotics). Then ||Q;1 — Q| = Oplan,r)-

Proof. The original proof could be found in |Saikkonen and Lutkepohl (1996) Lemma A.2.

12,1 = QM1 < 12 120 — Qalll2H] < (1911 4+ 125" =91 11920 — Qa2

Let v, 7, zn7 and 2,7 denote |01, |0, — Q1 and ||, — Qu||, respectively. From the
preceding equation, we have

Wp,T = ’ < zp1r = OplanT) = 0p(1).
" (Un,T+Zn,T)Un,T " p( " ) p( )

We now solve for z, r:

Ui,Twn,T
Znp = ———— = Op(an,1).
1- Un, TWn, T
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Theorem A.2 (Higham| (2008) p269; Dieci, Morini, and Papini| (1996))). For A € C™*" with
no eigenvalues lying on the closed negative real azis (—o0,0],

1
log A = /0 (A—D[tA-T)+ 1) at.

Proposition A.9. Let A, B be n X n real matrices. Suppose that A is symmetric, positive
definite for all n and its minimum eigenvalue is bounded away from zero by an absolute constant.
Assume |A71B|, < C < 1 for some constant C. Then A+ B is invertible for every n and

(A+B)'=4"1-A"'BA +O(|B|}).

Proof. We write A+ B = A[I — (—A7'B)]. Since || - A™'Blls, < C < 1, — (-A"'B) and
hence A + B are invertible (Horn and Johnson| (1985) p301). We then can expand

(A+B) ' =) (-A"'BfA =A' - A'BAT ¢ Z ATIB)k AL
k=0
Then
Soattppatt < S At A, <ZH B, 147 e,
k=2 lo k=2

oo -1 1 —1
41 k —-1 o HA BHKQ HA H52 ”A ”ZQHB”ZQ
SkZQH A5, 147" = T 7 B e

where the first and third inequalities are due to the submultiplicative property of a matrix
norm, the second inequality is due to the triangular inequality. Since A is real, symmetric, and
positive definite with the minimum eigenvalue bounded away from zero by an absolute constant,
|A71|s, = maxeval(A~!) = 1/mineval(4) < D < oo for some absolute constant D. Hence the
result follows. O

Proposition A.10. Consider real matrices A (m x n) and B (p x q). Then
1A @ Blle, = [|Alle. || Blle,.-
Proof.

|A® Blg, = /maxeval[(A ® B)T(A® B)] = v/maxeval[(AT ® BT)(A ® B)]
= y/maxeval[ATA @ BTB] = y/maxeval[AT Ajmaxeval[BTB] = || A||, || Bll¢,,

where the fourth equality is due to the fact that both ATA and BTB are symmetric, positive
semidefinite. ]

Proposition A.11. Suppose we have subgaussian random variables Zy; j forl =1,...,L (L > 2
fized), t =1,...,T and j = 1,...,p. Zj, 1,4, and Zy, 4, j, are independent as long as t1 # to
regardless of the values of other subscripts. Then,

L
1121
=1

max max [E

<A=0(1),
1<j<p 1<i<T

for some positive constant A and

L
1§j<p‘T (H Zitg — [1H1 Z“JD‘ =Op ( (log];)LH) :

max
t=1
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Proof. See Proposition 3 of Kock and Tang (2018). O

Lemma A.7. Let A be a p X p symmetric matriz and v,v € RP. Then
9T AD — o7 Av| < |mazeval(A)|*||o — v||3 + 2(||Av]|2]|o — v||2).

Proof. See Lemma 3.1 in the supplementary material of van de Geer, Buhlmann, Ritov, and
Dezeure| (2014). O]

Lemma A.8. Let A and B be m X n and p X q matrices, respectively. There exists a unique
permutation matriv P = I, @ Kqm ® I, where Kg,, is the commutation matriz, such that

vec(A ® B) = P(vec A ® vec B).

Proof. Magnus and Neudecker| (2007)) Theorem 3.10 p55. O

Theorem A.3. For arbitrary n X n complex matrices A and E, and for any matriz norm |- ||,
le?+5 — el < || El| exp(]| E|]) exp(]| Al})-

Proof. See Horn and Johnson (1991) p430. O

Lemma A.9 (van der Vaart| (1998) p27).

X2 —k 4

ok — N(0,1),

as k — oco.

Lemma A.10 (van der Vaart (2010) p4l). For T, n € N let X, be random vectors such that
X7y ~ X, as T — oo for every fized n such that X, ~ X as n — oo. Then there exists a
sequence n — oo such that X7y, ~ X as T — oo.
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8 Supplementary Material

8.1
Proposition 8.1. Suppose that Ay, As, ..., Ay, are real symmetric and positive definite matrices
of sizes a1 X ai,...,0y X Gy, Tespectively. Then

log(A1 ® A2 ®---® Ay)
=logA1 @1, ® - R1Ip, +1p RlogAa @1y, @RI, + -+ 1o @1y, @ @ log Ay

Proof. Since Ay, As,..., A, are real symmetric, they can be orthogonally diagonalized: for
1=1,...,0,
Ai = UZT AiUi,

where U; is orthogonal, and A; = diag(\i1,...,\iq,) is a diagonal matrix containing the a;
eigenvalues of A;. Positive definiteness of Ay, Ao, ..., A, ensures that their Kronecker product
is positive definite. Then the logarithm of A1 ® Ao ® --- ® A, is:

log(A1®A2®---®Av)zlog[(U1®~--®Uv)T(A1®-~-®Av)(U1®~--®Uv)]
=(Uh® - @U,) logA @ - @A) (U1 @ -+ ®@Uy), (8.1)

where the first equality is due to the mixed product property of the Kronecker product, and
the second equality is due to a property of matrix functions.
Now let Ay_, denote Ay ® --- ® A,.

log(A1 ® Ag—y) = diag(log(A1,142-4), . .., 10g(A1,0, A2—v))

= diag(log(A1,11as-ay A2—0), - - -, 108(A1,0y Lag--ay N2—v))

= diag(log(A1,11a5--a, ) + 10g(A2—y), - .., 10g(A1 a1 Lag--a, ) + 10g(A2—y))

= diag(log(A1,11as-a0 ), - - - 5 108(M,a; Lag-a, ) + diag(log(Aa—y), . . ., log(A2—y))

= log(A1) ® Iay...a, + Lo, @ log(Aa_y), (8.2)

*Institut de statistique, biostatistique et sciences actuarielles, and CORE, Université catholique de Louvain,
Louvain-la-Neuve, Belgium. Email: christian.hafner@uclouvain.be
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ob120@cam.ac.uk.Thanks to the ERC for financial support.
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where the third equality holds only because A1 jl4,...q, and Aa_, have real positive eigenvalues
only and commute for all j = 1,...,a; (Higham (2008) p270 Theorem 11.3). Substitute (8.2)

into (8.1)):

log(A1 ® A2 ® - @A) =(U1 @ @U,)Tlog(A1 @ - @A) (U1 @ - - @ Uy)

= (U1 @ Ua—y)T(log A1 @ Igy..q, + Loy ®1logAa_y) (U @ Us—y)

= (U1 @ Uz—y)T(log A1 @ Lgy..q,) (U1 @ Uz—yy) + (U1 @ Ua—yy) (14, ®log Ao—y)(Ur & Ua—y)
=log A1 ® Iny.q, + 1o, ®log Aa_y,

where Us_p, = Us® ---®@ U, and As_, := Ay ® --- ® A,. This procedure can be repeated until
we get the proposition. O

8.2
Proposition 8.2. Let Assumptions[3.1)(i), [3.4(i) be satisfied. Then

log® n4>

¥ = Vil =0, (1%

Proof. Let Z;; denote x4 ; — Z;, similarly for Zy ;, Ty 1, 1. Let 24; denote x4; — p;, similarly for

Lt 5y Lt ky Lt L

|| ”OO 1Sx,y§n2 ’ 7x7y a;7y| 1SZ7j’k’€§n | 71’]’ Y 7‘7.]7 k) ‘
T T
< 1 - . 1 L (8.3)
S mmax | — Zﬂﬁt iLt,j Lt kLt l — th i Lt,j Lt kLt L .
1Sl,j,k,€§n T 77' ’.7 bl y T 71 7.] b bl
t=1 t=1
1 T
boomax |y gy pdee — Bl i g 8.4
1< k< T s talt gLt kLt l [ talt,jltk t,Z] ( )
T T T T
n 1 . 1 - 1 L. 1 L. (85)
max — E .fCtV‘IIZt 1 — Tt Xty | — | = Z Tt Tt 4 — Z Tt Tt p .
ISZ,j,k,ZSTl T ? 5] T ’ kl T 5T 5J T I 9
t=1 t=1 t=1 t=1
1 & 1 &
o omax (=) dpide ) (= > Serdre | — Elig b Eld i 8.6
1§z,j,k,€§n T t_l 71 7] T t_l k) k) [ 7Z 7.7] [ bl El ] ( )

8.2.1 (8.4)
By Assumption (i), Tti, Tt j, Ttk Tty are subgaussian random variables. We now show that
Tt4, Tt,j, Tty Tp ¢ are also uniformly subgaussian. Without loss of generality consider iy ;.

P (Jir] > €) = P (Jars — il =€) <P (Jana] > € — |p]) < Ke Ol Iuil)?

< Ke=0¢ 2C¢luil ,=Cluil* < fro=Ce 2Celuil < ¢ o=Ce (C(e/2+2uil*)

— Ke*%06262c|m|2 < Ke*%CEQCZC(maxlgign luil)? — K’e*%C@’

where the fifth inequality is due to the decoupling inequality 2xy < 2%/2 + 2y?, and the last

equality is due to (A.20). We now consider (8.4]). Invoke Proposition in Appendix

oo o log” nt
T g Byl jEy kg — By iy jEy ke g| = Op T : (8.7)
t=1

max
1<4,5,k,<n




8.2.2

We now consider .
1 X
1§i1,nj,%§3n < Z Lt ﬂt,g) (T tz_; it,kJUt,z) E[»’Ut it ]]E[xt kTt Z]
1. . . o
< 1<£%§<n <T ; fUt,ﬂt,j) (T ; Tt kTt e — E[%,Mt,ﬁ]) ‘ (8.8)
+  max  |E[#y i) <1 > b — E[:i;t,l-:'ct,jo ‘ : (8.9)
1<i,j,k<n T pt
Consider .
T 1 X
1<Z{I]1%>§<n <T Z z-rt,]) <T tz_; i“t,kit,e - Eit,kit,z> ‘

T T
max | |— § dp it — By idy ;| + [Edgide | | max 1 § By pdip g — By iy
1<7,7]<n T — 1Sk5,£Sn T pt ) ) ) 5

o) som)a () o 5)

where the first equality is due to Proposition in Appendix and the last equality is due
to Assumption [3.2(i). Now consider

mthte( E Tyilyj — xt,iﬂtt,j])’

max
1<4,5,k,0<n

log?® n?
-0 (*5)

where the equality is due to Proposition in Appendix Thus
T T 3
1 . 1 . o . log® n?
<T ;ﬂft,ﬂt,j) (T ;ft,k%e) — E[@y,i20,;E[2 gt0] | = Op ( gT > . (8.10)

8.2.3 (8.3

We first give a rate for maxj<i<p |Z; — p;|. The index ¢ is arbitrary and could be replaced
with j, k, ¢. By Assumption (i), {xt,i}thl are independent subgaussian random variables. For
€ >0, P(|z;] > €) < Ke™ 9. Tt follows from Lemma 2.2.1 in [van der Vaart and Wellner| (1996)

that [|zqilly, < (1+K)"?/CV/2. Then ||ze; —Exvilly, < |21l v, v < ZUEEE Next,

using the second last inequality in [van der Vaart and Wellner| (1996) p95, we have

1
< max |E .i‘t kijtg max |— .ft ‘jl't i — E.’Et 'i’t i
< max [Eli, ,HISWT;; sieg = B,

max
1<d,j,k,<n

(log2)~1/2 =

1/2 o 2(1 4+ K)*/? )
< E

i1~ Bl < e — Ezagllu, (log2)” =5

Then, by the definition of the Orlicz norm, E [eW|$t7i—sz,il] < 2. Use Fubini’s theorem to
expand out the exponential moment. It is easy to see that z;; — Ex;; satisfies the moment



conditions of Bernstein’s inequality in Appendix with A = % and 03 = % Now invoke
Bernstein’s inequality for all € > 0

1 T
P (‘ T Z(xm — E:L't’i)

t=1
Invoking Proposition in Appendix we have

T logn logn logn
N N R e e

1
T Z(wm — Ex )
where the last equality is due to Assumption ( ). Then we also have

> 08 [Ae + \/%}) < 9e~Tote,

max |Z; — p;| = max
1<i<n 1<i<n =1

[nax |Zi| = oax. |Zi — pi + il < [nax |Zi — pal + max. il = Op ( 10?") +O(1) = Oy(1).
(8.12)
We now consider (8.3)):
T T
1
1§{Hj,%§§n Z R N *t - Ty Ty Tt Tt

With tedious expansion, simphﬁcatlon and recognition the indices i, j, k, £ are completely sym-
metric, we can bound (8.3) by

1<zr,?%)§<n‘xzxjka i e | (8.13)

4 _max 3 (T30~ ppnie) | (8.14)
| I

+6 1§ir,nj,%§§n (T ; xt,@:tt,j) (ZCk:Eg — uk,ug) (8.15)
| T

+4 19{?,%9 (T tzl xt,ia:tijt,k> (Ze — 1) |- (8.16)

We consider first. can be bounded by repeatedly invoking triangular inequal-

ities (e.g., inserting terms like 1;7;71%¢) using (A.20)), (8.12) and (8.11). (8.13) is of order
»(y/logn/T). M is of order O,(+/logn/T) by a similar argument. M and (8.16) are of

the same order O, (y/logn/T') using a similar argument provided that both maxi<; j<p | Zle xy x| /T

and maxi<; jr<n | Zthl »(1); these follow from Proposition in Ap-

pendix [A5] Thus

T |
— E T4 it j Ty pTe g — T Ty iy j T kT g
t=1 t=1

= Op(/logn/T). (8.17)

max
1<4,5,k,<n

8.2.4 (8.5)
We now consider ({8.5]).

T 1 T 1 T 1 T
( Z:i" zﬂ?t,]> <TZ ki‘t,e> - <Tzi‘t,z'it,j) (Tzit,kiﬂt,z)‘
t=1 t=1 t=1

l<z,] k £<n —
1 T
< max ( Zazt Z:ct,]> <T ; (Ze 3,0 — g'ct,k:bt,g)ﬂ (8.18)
I, 1 &,
+ o max (T ; Bt gt 0 (T ; (Tt — xt,ixt,j)) ‘ (8.19)

W



It suffices to give a bound for (8.18) as the bound for (8.19) is of the same order and follows
o . oy - T T ~ ~ _ 1 T
through similarly. First, it is easy to show that maxi<; j<n |7 D 1—1 Ttiej| = MaX1<ij<n |7 D pmq Te,ie,j—

z;Z;| = Op(1) (using Proposition in Appendix [A.5)). Next

1 L . - =
max |- Z (Bt pre — Eenbee)| = 1o —(Tk — ) (Te — pae)

T
1<k,(<n
t=1

=0, (k)in> . (8.20)

The proposition follows after summing up the rates for (8.7), (8.10), (8.17) and (8.20). O

8.3
Proposition 8.3. Let Assumptions[3.1)(i), [3.4(i) and[3.3 be satisfied. Then we have

. . n
IPle =00, 1Pl =00, 1Pr-Pla=0, (/7). 2
Proof. The proofs for ||P||g, = O(1) and ||Pr||s, = O,(1) are exactly the same, so we only give
the proof for the latter.
1Prlle, = 12 = Du D (In ® O7)Malley < 1+ | Dn D} (I @ O1) Ml
<1+ Dullea 1D lleo I In @ O lle, | Malle, = 1+ 2[ Inlec1O7 (e, = Op(1)

where the second equality is due to (A.13) and Proposition in Appendix and last
equality is due to Proposition (ii). Now,

|Pr = Plloy = |[1,2 — DpDy} (I ® O7) My — (I;2 — Dn D (I, ® ©)My)|e,

= | D D3t (In © O7) My — DypD;f (I @ ©)Mg) e, = || Dn Dy (In © (O — ©)) Malle,

= Op(\/W%
where the last equality is due to Proposition [3.1fi). O
Proof of Theorem[3.3. We write
VT (p — 6°)

~

Gr
_ VT (ETWE)\ETWD; Hvec(©7 — ©) VT (ETWE) 'ETW D} vec O,(||©1 — ©|12))
GT GT
VI (ETWE) " ETW D H 3vec® ’E=i¥) vee(Sy — %)

VGr

VT (ETWE) ' ETW D vec O, (/O — ©[3))

Gr
=1y + 1y,
where g:’/ﬁgg -y denotes the matrix whose jth row is the jth row of the Jacobian matrix
s=5¢
g‘\j‘eﬂzg evaluated at vec ig), which is a point between vec Y and vec 37, for j = 1,...,n2.
Define

_ VTC(ETWE)'\ETWD}HP(D'/? @ D™1/?) vec(Sr — ¥)
= N .

To prove Theorem it suffices to show ¢; % N(0,1), t1 — t; = 0,(1), and i3 = 0,(1). The
proof is similar to that of Theorem [3.1) so we will be concise for the parts which are almost
identical to that of Theorem [3.11

t1:



8.3.1 t % N(0,1)

We now prove that ¢; is asymptotically distributed as a standard normal.

t) =
VT (ETWE) ' ETWD,FHP(D /% @ D™1/2) vec (% i [ = ) (e — )T = B(ay — p) (- u)T])
VG
& TTV2(ETWE) T ETW D HP(DV2 @ DV2) vec [(y — p)(ze — )T — Bz — p) (@ — p)T]

VG

t=1
= g UT,n,t-
t=1

Trivially E[Ur,] = 0 and .1, ]E[U%’n’t] = 1. Then we just need to verify the following
Lindeberg condition for a double indexed process (e.g., [Phillips and Moon| (1999)) Theorem 2
pl070): for all e > 0,

1i 2 dP=0.
nﬂlglooz/ UT’n’td 0

t=1 7 {lUr,n¢|>¢}

For any v > 2,

/ U3, ,dP = / U2, Uo7 Ups[1dP < €27 / Uppa["dP
{‘UT,n,t|25} {‘UT,n,t|Z€} {|UT,n,t|ZE}

S EQ_V]E’UTm’t”Y.

We first investigate at what rate the denominator v/G goes to zero:
G=c(ETWE) 'ETWDIHP(D™'? @ D™V V(D~Y2 @ D~V\PTHD"WE(ETWE) ‘¢
> mineval (ETWD;,f HP(D™Y/? @ D-Y2)V(D~V2 @ D-V2)PTHD"WE) || (ETWE)¢|3
%minevalz(W)c(ETWE)fzc > gminevaIQ(W)mineval (ETWE)™?)

\Y

n - mineval?(W) S n
wmaxeval?(ETWE) ~ wmaxeval?(W—!)maxeval? (W )maxeval?( ETE)
n
"~ wr2(W)maxeval?(ETE)
where the second inequality is due to Assumption [3.5(ii). Using (A.15)), we have
1

Ve =0(/s2-n-r2(W)-w@). (8.22)

Then a sufficient condition for the Lindeberg condition is:

T2 (*nk?(W)w)"/?

T(ETWE)'\ETWD;HP(D™/? @ D™'/?) vec [(we — p) (e — )T = E(ze — p) (e — p)7] ‘W
=o(1), (8.23)

for some v > 2. The verification will be exactly the same as that of . In the end, we have
T2 (*nk?(W)w)?/?

-E

n? - k3(W) -loghn - w2>7/2

= T2 (2 (W) @) (wk(W)n)"20(og” n) = O (
T~

by Assumption ii).



8.3.2 t —11 =o0y(1)
We now show that t; —#; = op(l). Let A and A denote the numerators of t1 and fl, respectively.

b /Al _ /sInR2(W)wA Vs2nr2(W)wA
1—t = :
vG \/ \/s2n/<;2 W)wG \/S2n/£2(W)wéT

Since we have already shown in (8.22) that s?nk?(W)wG is bounded away from zero by an
absolute constant, it suffices to show the denominators as well as numerators of ¢; and #; are
asymptotically equivalent.

8.3.3 Denominators of t; and ;

We first show that the denominators of ¢; and ¢; are asymptotically equivalent, i.e.,
sk} (W)w|Gr — G| = 0p(1).
Define
Gr = (ETWE) ' EYWD; HpPr(D;'*2D; " *\V(D7*0 D) PLH DY WE(ETWE) ™!

By the triangular inequality: 32nf§2(W)Ev|GT—G| < $?nk2(W)w|Gr — Gr|+ s2nk2(W)w|Gr —
G|. First, we prove s’nx?(W)w|Gr — Gr| = 0,(1).
s*nk?(W)w|Gr — G
= $*nk?(W)w|cT (ETWE) " \EYW D;f Hr Pr(D;"? @ D' *\Vip(D;Y? @ D;Y?) Pl D} WE(ETWE) ™!
— ((E'WE)\E'WD; HrPr(D;'? @ D7V \W(D? ® DY) Pl D WE(ETWE) ¢
= s*nr*(W)w
LT 17 T 1/2 ~1/2 ~1/2 —1/2\ AT 4T T

T (ETW E)"LETW Dy Hr Pr(Dy'? @ D72 (Ve — V(D' @ DY) PLHr D W E(ETW E) ¢
< (W)@ | Vi — Vool (D7 @ D_l/z)PTHTDJFTWE(ETWE)* c|?
< PR (W)@ || Ve = Vool (D ‘”2®D‘1/2>PTH D"WE(ETWE) ¢/}

—1 2 —1/2 _

< P2 (W)@ ||V — Vool (D7 @ D)2 I PFHE, | Al | DET 12, W E(ETW E) |2,

~ n4k6(W)stwtlog® nt
= O, (s (W) |V — Vo = O, <\/ ) o)

where |[|-||c denotes the absolute elementwise maximum, the third equality is due to Proposition

A.3(v), Proposition in Appendix [A.5] (A.12), (A.19), (A.13) and (8.21)), the second last

equality is due to Proposition in SM and the last equality is due to Assumption (ii).
We now prove s?nx?(W)w|Gr — G| = 0p(1). Define

Gra = (ETWE) *ETWD; Hp Pr(D~Y2 @ D~V V(D2 @ DY) Pl Hy D" WE(ETWE) ™!
Gry = (ETWE) 'E"WD;} HrP(D™'? @ D~VY2\V(D~Y2 @ D~Y2)PTH D} "WE(ETWE) ™!

We use triangular inequality again

$2nk? (W)w|(~¥T—G| < $?nk? (W)w|GT—éT7a|+82nm2(W)w]éna—éq“,b]+32nﬁ2(W)w\éT7b—G\ )
(8.24)



We consider the first term on the right hand side of (8.24)).

$*nk2(W)w|Gr — CNJT’a| =

$ni(W)w|dT (ETWE) ' EYW D Hp Pr(D; " ® DY*)W(D;Y? @ D;'/*)PLH D} WE(ETW E) ™!
- cT(ETWE)*lETWD+ﬁTPT( D™ V2 e D YVV(DY2 @ D7V PLHr D} WE(ETWE) " ¢|

< k(W )w|maxeval(V)|* [|(D}* © D, /* — D™V/2 @ DY) PIAr D W E(ETW E) ¢}
+ 2 (W)w||V(D~Y? @ D~ I/Q)P}HTD;{TWE(ETWE)_1c||2
N(DFY? @ D;Y? — DV @ DTV PLH DT WE(ETWE) /|3 (8.25)

where the inequality is due to Lemma in Appendix We consider the first term of (8.25))
first.

s2n/£2(W)w‘maxeval ‘ (D 1/2 ® D 12 _p-l2g D_l/Q)P}ﬁTD;fTWE(ETWE)_ch%

~1/2 —1/2 - - A A _
= O(s*n*(W)w) || D7/ ®DT/ — D™V2 0 DTV PRI | Hr 17, DTN, IW E(ETW E) I,
= 0y (P (W) T) = o(1),

where the second last equality is due to (A.12), (A.13]), (A.19), (8.21) and Proposition (Vii),
and the last equality is due to Assumption (ii).
We now consider the second term of (8.25)).

25°nk*(W)w||V(DY2 @ DY) PLHr D} WE(ETWE) " ¢|2
N(DFY? @ D;Y? — DV? @ DV PLH DT WE(ETWE) /|3
< O(s*ns®(W)w)| D7 @ Dr'? — D72 @ D7V, | PHZ, | B 12, 11D |2, | W E(ETW E)~Y|I2,
= O(\/s kS (W)@t /T) = 0,(1),

where the first equality is due to (A.12), (A.13), (A.19), (8.21) and Proposition (vii)7 and
the last equality is due to Assumption [3.2{(ii). We have proved s*nx?(W)w|Gr — Gr,q| = 0p(1).
We consider the second term on the right hand side of (8.24).

s*ni? (W) w|Gra — Gyl =
s?nk(W)w|c"(ETW E) " E™W D} Hy Pr(D™Y? @ DY) V(D~Y2 @ DY) PIHr D WE(ETWE) ™!
— (ETWE)'ETWD;} HrP(D™Y2 @ D™Y2)V(D™Y2 @ D™V PTH D" WE(ETWE) "¢
< s?nk*(W)w|maxeval (D2 @ D™Y2)V(D~/? @ D71/?)] 12 |(Pr — P)THr D} "WE(ETW E) |2
+282nk?(W)w| (D2 @ D™Y2)V(D™V2 @ D~V PTHp D WE(ETWE) ™ '¢||2
||(Pr — P)THr D} " WE(ETWE) |, (8.26)
where the inequality is due to Lemma in Appendix We consider the first term of
first.

s?ni?(W)w|maxeval (D~ @ D™Y2)V(D™Y/2 g D71/?)] \2 |(Pr — PYTHr D" WE(ETW E) ™ ¢||2

= O(s*nk>(W)w)|| PF — PTIIZ, | HellZ, | D17, IW E(E™W E) |7,
= Op(s*ni(W)w?/T) = (1),

where the second last equality is due to (A.12), (A.13), (A.19), and (8.21), and the last equality
is due to Assumption ii).




We now consider the second term of (8.26]).

25’*nk2(W)w||(D™V? @ D~V2\WV(D™Y2 @ D™YV2)PTHr D} TWE(ETWE) ¢||s
N(Pr — P)THr D" WE(ETWE) ||,

< O(s*nk®(W)w)|| P — PT|IZ, | Hr |7, | DT I I1W E(ETW E) |17,

= O(Vs'nrb(W)w'/T) = 0,(1),

where the first equality is due to (A.12)), (A.13)), (A.19), and (8.21), and the last equality is due
to Assumption (ii). We have proved s?nk?(W)w|Gr.a — Grp| = 0p(1).
We consider the third term on the right hand side of (8.24]).

s*nw*(W)w|Grp — G| =
2 (W)w|c(ETWE) '\ ETW D, HrP(D™'? @ D~V2\V(D~Y2 @ D™Y2)PTH D} "WE(ETWE) ¢
— (ETWE) 'ETWD}HTP(D™'? @ D~V2\V(D~Y2 @ DY) PTHD " WE(ETWE) ¢
< $*nr2(W)w|maxeval P(D™Y2 @ D-Y2)V(DY2 @ D) PT)|*||(Hy — H)D W E(ETWE)~c||2
+ 282k} (W)w| P(D™Y2 @ D™V2)\WV(D~ Y2 @ DY) PTHD} WE(ETWE) ¢/
\(Hr — H)D"WE(ETWE) |2 (8.27)
where the inequality is due to Lemma in Appendix We consider the first term of
first.
s?nk*(W)w|maxeval[P(D~/? @ DY) V(D72 D—I/Q)PTH2 |(Hr — H)D"WE(ETWE) '¢|3
= O(s*nw*(W)w)|| Hr — HIIZ, | D} |17, |W E(ETWE) |7,
= Op(32n“3(W)w2/T) = 0p(1),
where the second last equality is due to , , and , and the last equality is due
to Assumption [3.2[(ii).
We now consider the second term of .
25’nk2(W)w||P(D~Y2 @ DV V(D™V2 @ DY) PTHD} " WE(ETWE) |2
(Hp — HYD"WE(ETWE)¢||
< O(s*ns®(W)w) || Hr — HIIZ, | D17, IWE(ETWE) |,
= O(Vs'nrS (W)@ /T) = 0,(1),
where the first equality is due to , , and , and the last equality is due to

Assumption ii). We have proved s*nx?(W)w|Grp, — G| = 0,(1). Hence we have proved
$?nk?(W)w|Gr — G| = 0p(1).

8.3.4 Numerators of ¢; and #;

We now show that numerators of t; and ; are asymptotically equivalent, i.e.,

Vs2nr2(W)w|A — A| = 0,(1).



Note that

. 0 Q) A

A=VTe(E'WE) ' ETWDH 27 vee(Sy — ¥)
dvecd S—50

_1 4, OvecO . -
= VT (ETWE) 'ETWD: H vee(Sp — Sr)
ovecX s=50)
1 4, OvecO ~
+ VT (ETWE) \ETW D H vee(Sy — ¥)
ovecX s=50)

=: Aa + Ab.

To show 527m2( e ]A A| = 0,(1), it suffices to show sanQ(W)wa — A| = 0p(1) and

V82nk2(W)w|Aa| = 0p(1). We first show that /s2nkx2(W)w|A, — Al = 0,(1).
Vs2nk2(W)w| Ay — A
_ «/szn/s?(W)w‘\/TcT(ETWE)IETWD:{H [aveC@

—P(D"?® D1/2)} vee(Sp — 2)‘

dvec?] s=50)
<VT2n2(W)w||(ETWE) " ETW |6, | Dy} || e || H ||,
Ovec® .
: — P(DY?2g p1/? Yr— %
|G S s T

lo

= O(\/Ts*nk2(W)w)/wr(W)/nO, <\/§> |27 — B|r < O(Vns263(W)w?)vn|| 27 — 24,

— oW/a W0, (/1) = 0, () — o),

where the second equality is due to Assumption [3.5(i), the third equality is due to Lemma
and final equality is due to Assumption [3.2[(ii).

We now show that /s2nk2(W)w|A,| = o0,(1)

PR (W) T " (ETW E)- ETw Dt it 239 vee(S7 — 2r)
Ovecy S=50)
$2nk2(W)wT | (ETWE) 'ETWD,' H OvecO vec [(Z — p)(Z — p)7]
" Oveck s
2nk2( T -lpT + O vecO 7 T
< V&t (W)wT[(ETWE) T ETW e [ Dy llea | Hlle: | 55 1 Ivec [(Z — 1)@ — )] Il2
T @2

= O(\/Ts%m2 W)w) \/wm W)/n||(z — p)(x — p)T||F
< O(\/Ts2n/<52 W)w) \/WFJ )/nn|[(Z — p)(T — 1)

O(\/Ts2n2k3(W)w?)  Jax [(Z = p)i(@ — p);| = 0, (\/Ts2n2k3(W)w?)logn/T

o, ([l

where the third last equality is due to (8.20]), the last equality is due to Assumption (ii), and
the second equality is due to (A.12)), (A.13)), (A.19), and the fact that

HaveCG _Havec@
lo

- P(D_1/2 ®D—1/2)
=5

=0, (\/@ +0(1) = 0,(1).

10
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8.3.5 1y =o0,(1)

Write .

VT/>nk2(W)wcT (ETW E) "L ETW D! vec Op([|©7 — O]7)
\/SQnﬁ2(W)wGT

Since the denominator of the preceding equation is bounded away from zero by an absolute
constant with probability approaching one by (8.22) and that s*nx?(W)w|Gr — G| = 0,(1), it
suffices to show

ty =

VT/s2nk2(W)wc (ETW E) "L ETW D vec O, (|61 — O[17,) = op(1).
This is straightforward:
IVTs2nk2(W)wcT (ETWE) ' ETW D} vec O, (|01 — ©]2)|
< VTs*nr2(W)w||cT(ETW E) "' ETW D,f ||z vec Op(|O7 — OIIZ,) 12
= O(VTs*w3(W)@?)[|0,([|07 — O[]l = O(v/Tns?*(W)w?) [ Op([|O7 — Ol7,)le.

. n3s2k3(W)w?
— O/ TRR TR0, (|61 - 012) = 0, (1) — o)
where the last equality is due to Assumption [3.2[(ii). O

84
Proof of Proposition[{.1. At each step, we take the symmetry of Q(6) into account.

déT,D(evu)
T T 1 &
— —dlog (DW exp(Q)Dl/2‘ — <T S (@ — w)T D2 [exp(9)] DY (a, — M))
t=1

_ —gdlog (DW exp(Q)DW‘ - gdtr (D*l/QiTD*”Z[eXp(Q)]’l)
(0 a0 D000 - T (5758 )

- —gtr (exp()] " dexp(€)) - gtr (D725 D= 2dfexp()] )

= —gtr ([exp(Q)] - dexp(Q)) + gtr (Dfl/QiTDfl/Z[exp(Q)]*ld exp(Q)[exp(Q)]*l)

_ gtr ({[exp(Q)]_l D25, D2 [exp(Q)] ! — [expm)}*l} dexp(Q))

= g lvec ({[exp(Q)]1D1/25]TD1/2[exp(Q)]1 - [exp(Q)}_l}T> vec d exp(§2)

- % [vec ([exp(Q)]—lp—l/QiTD—W[exp(m]—l - [exp(Q)]‘l)]Tvecdexp(Q),
where in the second equality we used the definition of Yp, the third equality is due to that
dlog | X| = tr(X~'dX), the fifth equality is due to that dX ! = —X1(dX)X~!, the seventh
equality is due to that tr(AB) = (vec[AT])T vec B, and the eighth equality is due to that matrix
function preserves symmetry and we can interchange inverse and transpose operators.

The following differential of matrix exponential can be inferred from (10.15) in Higham
(2008) p238:

1
dexp(Q):/ 102 (d0) et
0

11



Therefore,

1 1
vecdexp(f2) = / et @ eIt vee(dQ) = / et @ 1D, vech(dQ)
0 0
1
= / et @ 14D, Edo.
0
Hence,
d€T7D<6,,U:)
T —1y—-1/25 y—1/2 -1 —\T [t 9 1-H)Q
=3 [VeC ([exp(Q)] D28 D™ lexp(Q)] 7! = [exp(©)] )} / e ® el dtD, Edf
0
and
_ 8€T,D(07H)
007
1
= gETD;/ et @ (1701 [vec ([exp(Q)]_ID_1/2§~)TD_1/2[exp(Q)]_1 - [exp(Q)}_lﬂ
0
_. gETD;\ImIfQ.

Now we derive the Hessian matrix.
T TNT T TNT T T TNDT r TDHT

Consider dW¥ first.

1 1 1
d¥, =d / ' @ 1%t = / de'? @ e 0%t + / e ® det "%t
0 0 0

1 1
::/ A®e(1tmdt—|—/ ! @ Bdt,
0 0

where

1 1
A= / 1= (t0)e s, B = / e1=90-023((1 — 1)Q)es1 D%,
0 0

Therefore,

1 1
vecd¥ = / vec (A ® e(l_t)Q) dt + / vec (etQ ® B) dt
0 0
1

1
= / Py (vecA ® vec e(l_tm) dt + / Py (Vec ! @ vec B) dt
0

1 1
/ n2 ® vec eI~ 1t)Q) vec Adt + / Px (vec e ® Inz) vec Bdt
0 0

1 1

/ Py (1,2 @ vec el- 1t)Q) / e @ 179 . vee d(tQ)dt
0 0

1

1
+ [ Pk (vec e ® I,2) / 0170 @ =505 . vec d((1 — ¢)Q)dt

0

S—

1 1
/ PK 1,2 ® vec e(l— t)Q) / St @ (191 s 1t D, Edf
0 0

1 1
+ / Px (vece @ 1) / 102 @ (1=9) 1= . (1 — t)dt D, Edf (8.29)
0 0

12



where Pg := I, ® Ky ® I, the second equality is due to Lemma [A.§in Appendix [A.5] We
now consider dW¥s.

Ay = dvec ([exp(n)]—lD—l/2iTD—1/2 lexp(Q)] ! — [exp(Q)]_l)
= vec (d[exp(g)]*1D*1/22TD*1/2[exp(fz)]*l)

+ ([exp(Q)]—1D—1/22TD—1/2d[exp(Q)]—1) ~ vec (d [exp(Q)] ‘1)
= vec (-[exp(sz)]—ldexp(ﬂ)[exp(Q)]—lp—l/QiTD—l/Q[exp(sz)]—l)

+ vec (—[exp(Q)rlpfl/?iTD*l/?[exp(ﬂ)]*ldexp(m [exp(Q)rl)
+ vec ([exp(m]—ldexp(sz)[exp(g)]—l)

= (lexp()] ™" @ exp(@)] ) vecdexp(Q
~ (lexp(@)] ™" @ [exp()] ' D™ 1/22 D™ 2[exp(@)] ) vee dexp(©)
- ([exp(sz)]flpflﬂiTD*lﬂ[exp(Q)]*l ® [eXp(Q)Tl) vec d exp(Q2)

Substituting (8.29)) and (8.30)) into (8.28) yields the result:

asz,D(ea .UJ) _
00007
— %ETD,TL\Ifl (lexp Q) 'D~ V250D V2 0 1, + I,

(lexp Q' @ [expQ™!) U1 D, E

T 1 1

5(\IIT ® ETD]) / Pk (1,2 ® vec e(l_tm) / e @ U= s tdtD, E
0 0

T

1 1
+5 (U] ® ETDT)/ Px (vece™ @ 1) / 17D @ ((1=9)01-0g . (1 — t)dtD, E.
0 0

(8.30)

® lexp QD28 D72 1) -

8.5

Proposition 8.4. Suppose Assumptions (z'), (z) and hold. Then

(i)
1 1
== / / Ot 1 @ Ot %dtds
0 0

has minimum eigenvalue bounded away from zero by an absolute constant and mazimum
eigenvalue bounded from above by an absolute constant

(ii)
A 1 1 A~ ~
Er = / / L1 O " 5dtds
0 JO

has minimum eigenvalue bounded away from zero by an absolute constant and maximum
eigenvalue bounded from above by an absolute constant with probability approaching 1

o — n
-l =0, (/7).

(iii)

13



(iv)

= 0(1).

1
1W1lle, = H/ efU0) g ¢(1-1)20) gy
0 s

Proof. The proofs for the first two parts are the same, so we only give one for part (i). Under
assumptions of this proposition, we can invoke Proposition (1) to have eigenvalues of © to
be bounded away from zero and from above by absolute positive constants. Let A1,..., A,
denote these eigenvalues. Suppose © = QTdiag(A1,...,\,)Q (orthogonal diagonalization). By
definition of matrix function, we have

lt+s=1) _ QTdiag()\(lt+S_1) __’/\(tJrs 1) )
@(l—s—t) — QTdia‘g()\glfsft) ) )\(1 S— t )Q
O+ g 9= — (Q® Q)T [diag(AY“*“, L AEEDY @ diag (AT A0S (Q e Q)

= (Q®Q)TM(Q®Q),
where My is an n? x n? diagonal matrix whose [(i — 1)n + j]th diagonal entry is
1 ifi=y
1 ifi£g, =\

(%)SH_l 0% 4, A £

fori,j=1,...,n
Thus

//9”51 ® O 5dtds = (Q ® Q)T //MgdtdsQ@JQ)

where fol fol Madsdt is an n? x n? diagonal matrix whose [(i — 1)n + j]th diagonal entry is

ifi=j
0 A= N
VDY 2,
A [ 1] AN A

To see this,

14



For part (iii), we have

1 1 1 1
/n/‘eﬁkl®@;“wms—/a/16”s1®@1t%ms
0 JO 0 JO

1 1
§ / / @gfsfl ® @%:tfs _ @t+8—1 ® @l—t—s
0 Jo

Lo

dtds
12

1 1
— / / égjsfl ® é%:tfs o égfsfl ® @l—t—s + é)é:i’ﬁ*l Q @l—t—s _ @H—s—l Q @l—t—s ) dtds
0 0 2

1 1
— /0 /0 @gfsfl ® (@%ftfs _ @1—1%—5) + (@%Jrsfl _ @t+s—1) ® @l—t—s

dtds
lo

1 1.
= /0 /0 _H@éjrsfln@”@%rtfs _ @l—t—sng2 + ||(__)tT+sfl _ @t+s—1||€2||@1—t—sH€2} dtds

< 1057 e O3 10 — ©17 e, + 4! — 07|01

First, note that for any ¢, s € [0, 1], |57 1|, and ||©'~*~%||, are O,(1) and O(1), respectively.

For example, diagonalize ©, apply the function f(x) = '17'=% and take the spectral norm.

The proposition would then follow if we show that

max_[|OL7F — 017173, = O,(y/n/T), max |01 — "7, = 0,(v/n/T).

t,s€[0,1] t,s€[0,1]
It suffices to give a proof for the first equation, as the proof for the second is similar.
||é%:tfs . @l—t—sHb _ He(l—t—s) log&r p(1-t=5) 1og®H
<1 =t = 5)(log O7 —10g ©) ¢, exp[(1 — t — s)[| log O — log Bs,] exp[(1 — ¢ — s)[| 1og O||z,]
= ||(1 =t — s)(log O — log ©)]|¢, exp|(1 — t — s)|| log Or — log ©][,]O(1),

where the first inequality is due to Theorem in Appendix and the second equality is
due to the fact that all the eigenvalues of © are bounded away from zero and infinity by absolute
positive constants. Now use Proposition [3.1] to get

n

|| log ©7 — log O||s, = O, < T> .

The result follows after recognising exp(op(1)) = Op(1).
For part (iv), since © = QTdiag(A1, ..., \,)Q, we have

0! = QTdiag(\l,...,\L)Q, Ot =QTdiag(\l7t,..., A\L7H)Q.
Then

0'® 0" = (Q®Q)T [diag(Al,..., \,) @ diag(\ ™, ..., A )] (Q® Q)
= (Q®Q)TM;3(Q®Q),

2

where M3 is an n? x n? diagonal matrix whose [(i — 1)n + j]th diagonal entry is

1 if = j
1 i N =
N\ .

)\j <7Jl> lfl#j,/\i%)\j

fori,7=1,...,n.

15



Thus
1 1
U, = / O o tdt=(Q® Q)T/ M3dt(Q ® Q)
0 0

where fol M3zdt is an n? x n? diagonal matrix whose [(i — 1)n + j]th diagonal entry is

1 ifi=j

1 ifi# 4, =X
Xi—Aj e o

Tog A, —Tog X ifi # 5, M # N\

To see this,
t 1
A
OV Lyt f) 1 A
/\3/ = dt—)\J/ ) dt =\ J = )\[2—1}

Proposition 8.5. Suppose Assumptions[3.1(1), [3.3(i) and[3.5 hold. Then

g
~ n
[Tro = Tolls = O (smy/2).

o _ 1
Tzl = X5l = O (=% 7 )

(i)

Proof. For part (i),

A 1 e —_ 1 s —_—
IT7,p = Tplle, = SIETDR(ET = E)DnBlley < SIET e | Dillez E7 = Elles [ Dnlles || £lle,

n

— O)|Er — Z[n | EIZ, = O, (n T) ,

where the second equality is due to ({A.13]), and the last equality is due to (|A.16)) and Proposition
5 4.

For part (ii),

IT7p = Yo e = 1175 (Yo = T2.0) Y5 e, < 177 plle| Yo = T.plle 15 e,

— 0,(=*/n?)0, <5n\/§> _o, <sw2 an> .

Proof of Theorem [/.1. We first show that TT p is invertible with probability approaching 1, so

that our estimator §T7 D= érﬂ D — T L %D[)% /T is well defined. It suffices to show that

16



TT7 p has minimum eigenvalue bounded away from zero by an absolute constant with probability
approaching one.

~ 1 A A
mineval(Yr p) = §mineval(ETD7TlETDnE) > mineval(Zp)mineval(D] D,,)mineval(ETE) /2
n
2 Cia
w
for some absolute positive constant C' with probability approaching one, where the second
inequality is due to Proposition (ii) and Assumption (ii). Hence Y7 p has minimum

eigenvalue bounded away from zero by an absolute constant with probability approaching one.
Also as a by-product

o 1 w _ 1 w
il = =0, (2) 5l = iy =0 (Z) - 531

mineval(Y7 p) mineval n

From the definition of A7 p, for any b € R® with ||b]j2 = 1 we can write

VTO (Y1.0)(0r.p — 0) = VIO (Yr.p)(07.p — 0) — ﬁbﬂw

T o
o 1 9lr.p(6, ;

= VT (Y1,p)(0r.p — 6) — \/TbTTT’(%(T’m) — VT Y p(Or,p — 0) + 0p(1)
. A 1 9r.p(6,

= VTb" (Yr.p — Yp)(br.p — 6) — bTﬁTW + 0p(1)

where the second equality is due to Assumption and the fact that HAT, p is Cgy/nlogn/T-
consistent. Defining a7 = b7(—Yr p), we write

al ~ al -~ 3 . .
ﬁm(aT,D - (9) = ﬁmTT}D(TT,D — T)(HT,D _ 9)

lall2 =27 T o lall2”

_ a’ ,i\il \/Tl 8£T7D(0,.’i') Op(l)

By recognising that ||aT|s = |[bTT7.p|l2 > mineval(Tr p), we have

1 w
— =0, —].
all2 p(ﬂ)

Thus without loss of generality, we have

1 97,p(0,7)
T o007

We now determine a rate for the first term on the right side. This is straightforward

VT Y7 (Y10 = Yp) (0,0 — 0)] < VT bl Y25 lle, | Y7.0 — T lle, 07,0 — 62

n< 10 an K
— VTO, (w/n)snOy(\/n]T)Oy(+/nw(W)/T) = O, <\/ 2log : 3 (W)>7

where the first equality is due to (8.31]), Proposition (1) and the rate of convergence for the
minimum distance estimator 67 (07 p). Thus

VIV (Or,p — 0) = VTV Y o (Yr.p — Tp)(0r,p — 0) = "Y1 VT + op(w/n).

VT (0p p — 0) = —bﬁ‘;bﬁlw 1 rem
| ’ T 007
2102 73

17



whence, if we divide by \/bTYilDb, we have
T ~ —bTT \/78£TD Ox) T
\/Tb (GT,D —9) T,D 007 /

— - =:1 0s,D,1 + ZL/os D,2-
bTY 7 b bTY7 b \ /

_bTY S l\fr%TaDeS@ S /T

tos,D,l =
Ot

To prove Theorem it suffices to show —t,s p 1 4, N(0,1), 5057D71 — tos,p,1 = 0p(1), and
tOS,D,Q = Op(]')’

Define

8.5.1 —tosp1 o N(0,1)

We now prove that —t,s p,1 is asymptotically distributed as a standard normal. It is not difficult
to show E[—tys.p1] = 0 and var(—tes,p,1) = 1 under assumption of normality (Assumption

[B.1fii)). Write
—bTYT 1\F3€T8D€$9 M)/T _

tos,D,l =
\/OTY LMD

WY ETDI U (07 @ @) (D72 @ DY) T2 vec (¢ — p) (e — )T — E(we — p) (2 —

2
; \/OTY D
Z 0s,D, Tn,t-

N

The proof is very similar to that of tp 1 4 N(0,1) in Section |A.4.1L We now just need to verify
the following Lindeberg condition for a double indexed process: for all € > 0,

’Vly%—i‘I—r)lOO Z / U387D7T7n7tdp - 0'

t=1 {‘UosDTn t|>5}

For any v > 2,

2 2 -
/ Uos,D,T,n,th - / Uos,D,T,n7t’U057D7T7n7t’ ’Y|UOS,D7Ta”7t ”VdP
{onsDTnt|>5} {‘UosDTn t|>a}

< 52_7/ ‘Uos,D,T,n,t"ydPS 52_7E‘U ;
{one DTnt|>5}

We first investigate that at what rate the denominator \/bTYf)lb goes to zero.

b5 = 27 (ETDIED,E) ' b > 2mineval ((ETDIED,B) )
B 2
maxeval (ETDJED,E)

Since,

maxeval (ETDJZD, E) < maxeval(Z)maxeval(D] D, )maxeval(ETE) < C'sn,

18



for some positive constant C'. Thus we have

1

\/OTY D

Then a sufficient condition for the Lindeberg condition is:

— O(/sn). (8.32)

T2 (sn)1/2.
E ‘bTTBIETDIb\I/l(@_l 20 YD Y20 D7V?) vec (2t — p) (@ — )T — E(ze — p) (2 — p)7) ’
=o(1), (8.33)

Y

for some v > 2. We now verify (8.33). We shall be concise as the proof is very similar to that
in Section [AL4.1]

2l
E )bTTBIETD,TL\Iq(@_l ® 0 (D™ Y20 DY?) vec [(zt — p) (e — )T = E(zy — p) (2 — p)7) ‘

.
< b5 BT D (07! @ 07)(D7Y2 & DTV |vee (2 — ) (i — 1) — B — )i — )] |

_ _ _ _ _ Y
S (I eI ET e 1 DY ey 21l 107 @ © 7|, IDTY2 @ DY) |lg,) El| (e — ) (e — 1) 71|
2/ \7/2 v
0 (s s o= e~

=0 (sw2/n)w2 n?O(log” n),

where the second last equality is due to Proposition [8.4(iv), (A.16) and (8.31)), and the last
equality is due to (A.21]). Summing up the rates, we have

etiogtn) ")

Tl_%(sn)7/20 (st/n)W2 n’O(log" n) = O ( -
T~
by Assumption iii). Thus, we have verified (8.33]).

8.5.2 fos,D,l — tos,0,1 = 0p(1)

We now show that fos’D’l —tos,0,1 = 0p(1). Let Ays p and Aos’D denote the numerators of tys p 1
and t,s p 1, respectively.

~

7 Aos,D Aos,D V SnAos,D vV SnAos,D
tos,D,l - tos,D,l = = - = ~ -
JIrTah ot JenbrTilh fsnbrrpt

Since we have already shown in l’ that snb? TBlb is bounded away from zero by an absolute
constant, it suffices to show the denominators as well as numerators of fos’ p,1 and t,s p,1 are
asymptotically equivalent.

8.5.3 Denominators of fOS,DJ and t,5 p1

We need to show R
snlo™(Y7p — Tp')bl = 0p(1).

This is straightforward.
. . 1
salt™ (Tl = Y5 < sul Tty = Tl = 500, (s 1) = 0, (22 [2)
= Op(1)7

where the last equality is due to Assumption (iii).
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8.5.4 Numerators of fos,D’l and t,5p1

We now show

Vsn

bTTTDf‘%TD(G D 7 _prr 1f8€T§9(T9 #)/Ti—op(l)-

Using triangular inequality, we have

bTYT}D\/TaET’g;tg’x)/T - bTTDlx/TW/Ti

bTTTD\F‘%TD(e D i _pir- 1f8£T§9(T9 x)/T'

e lfaem(e D) e 1\f3€Tge(T9 1) /T‘ (8.34)

Nen

< Van

+Vsn

We first show that the first term of (8.34) is op,(1)

Vsn|bT (Y7L, — r];l)\/TiaET’D(e’f) /T

o7

- Jam
SVl Y7 = Yo e VTIE oS — Sk
snw?s\/1/(nT)VT/sny/n||Sr — 2o, S Venw?sy/1/(nT)WWT/sny/ny/n/T

o () -

where the last equality is due to Assumption [3.2[(iii).
We now show that the second term of (8.34]) is o0, (1)

. 0l7.p(0, 7 Dl7.p (0,
bTTDl\/T< Té)@(T )/T— TaDg(T M)/T>‘

N 1 N
T (Y7l, — r;)l)\/fiETD,g\yl(e* ® 0~ ) (D™ V2 @ D7Y?) vec(Sr — z)’

Nen

=\/sn bTT[)l\/T%ETDTTL%(@’I ® 0~ ) (D72 @ D™V?)vec(Sr — S7)

B . ~ w logn
= O T3 e VTIEl |7 = Srlle = Op(Vsm) ZVTVsmn-%

log* n - n2c?
oy (=)

where the third last equality is due to (8.20)), and the last equality is due to Assumption (iii).

8.5.5 ty5.p2 =o0p(1)

To prove tos p2 = op(1), it suffices to show that /sn|rem| = op,(1). This is delivered by
Assumption [3.2[(iii). O
8.6

Proof of Proposition[3.3. We only give a proof for part (i), as that for part (ii) is similar. Note
that under Hy,

VTgr.p(8) = VT[vech(log O1p) — E] = VT[vech(log O p) — vech(log ©)]
= VTD; vec(logO7 p — log ©).
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Thus we can adopt the same method as in Theorem [3.1] to establish the asymptotic distribution
of VTgr p(0). In fact, it will be much simpler here because we fixed n. We should have

VTgrp() % N(0,5), S:=DfHD Y22 D V)V (D2 D V2)HDIT,  (8.35)

where S is positive definite given the assumptions of this proposition. The closed-form solution
for 07 = 07 p has been given in 1' but this is not important. We only need that 67 p sets
the first derivative of the objective function to zero:

ETWgTVD(éj:D) = 0. (8.36)

Notice that R R

Pre-multiply (8.37) by %@T’D)W = —ETW to give

—E"W(gr.p(0r.p) — 97.0(0)] = ETWE(Or.p — 6),
whence we obtain
Orp — 0 = —(ETWE) *E™W gr.p(07.p) — g7.0(0)]. (8.38)

Substitute (8.38)) into (8.37)

\/TgT7D(9AT7D) = [In(n+1)/2 — E(ETWE)ilETW] \/TgT,D(Q) + E(ETWE)flﬁETWgT,D(éTyp)
= [Intni1)2 — E(ETWE) ' ETW] VTgr,p(6),

where the second equality is due to (8.36)). Using (8.35)), we have

A d
VTgr,p(0r,p) <
N (0, [Iugus1y2 = E(ETWE) ™ ETW] S [y 412 = E(ETWE) ' ETW]T) .
Now choosing W = S~!, we can simplify the asymptotic covariance matrix in the preceding

display to
SY2 (Lynsrys — STHPE(ETS T E) T ETSTY?) 812,
Thus N R ;
\/TS;,D/ gr.p(0r,p) = N <O7In(n+l)/2 - Sil/zE(ETsflE)flETSAm) :

because S”T7 D is a consistent estimate of S given 1} and Proposition which hold under
the assumptions of this proposition. The asymptotic covariance matrix in the preceding display
is idempotent and has rank n(n + 1)/2 — s. Thus, under Hy,

A - 5 d
Tgr,p(07,0)"S7 p9r,0(01.0) = Xiini1y /25

Proof of Corollary[3.3. We only give a proof for part (i), as that for part (ii) is similar. From
(3.5) and the Slutsky lemma, we have for every fixed n (and hence v and s)

A a A n(n n(n+1
Tgr.0(07.0)"S7 bgr.0(07.p) — [ — 5] d, X 1) /2—s — [ — ]

[n(n+1) — 2s] 1/2 [n(n+1) — 2s]

1/2 )
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as T — oco. Then invoke Lemma [A29]in Appendix [A75]

n(n+1
Xi(n+1)/2— - (2 :

[n(n+1) — 2s]

~ <] 4 N(0,1),

1/2

asn — oo under Hy. Next invoke Lemma[A.T0]in Appendix[A.5] there exists a sequence n = ny
such that

T97,0,0(07,0,0)7 87, p970.0(070,0) — [“U5) — 5]

d
— N(0,1), under Hy
[n(n+ 1) — 2s] 1/2

as T — oo. O

Proof of Corollary[3.1] Theorem [3.1] and a result we proved before, namely,

N N 1
|GT,D — GD| = |CTJT’DC — CTJDC| = Op (,Sn/{(m> s (839)

imply
VT (br.p — 0°) % N(0, T Ipe). (8.40)

Consider an arbitrary, non-zero vector b € R*¥. Then

’

H | Ab][2

so we can invoke (8.40) with ¢ = Ab/||Ab||2:

BTAT  Ab
VT VAT (Or.p — 0°) & N (0, Jb ) ,
| Abll2 || Abl|2

2

HAsz

which is equivalent to
VTHTAT(07,p — 0°) & N (0,67 ATJp Ab) .

Since b € R* is non-zero and arbitrary, via the Cramer-Wold device, we have
VTAT(6r.p —6°) % N (0, ATJpA).

Since we have shown in the mathematical display above (A.15) that Jp is positive definite and
A has full-column rank, ATJpA is positive definite and its negative square root exists. Hence,

VT(ATIpA) 2 AT (b p — 6°) S N (0,1;) .
Next from ({8.39)),

- 1 1
|bTBY| = [bT AT Jy,p Ab — bTATJp Ab| = o, (Sm(W)) |4b]|5 < o (sm(W)> [RY A

By choosing b = e; where e; is a vector in R* with jth component being 1 and the rest of
components being 0, we have for j =1,...,k

1
|Bj;| < op (M) 1|17, = op(1),
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where the equality is due to [|A|¢, = Op(y/snx(W)). By choosing b = e;;, where e;; is a vector
in R* with ith and jth components being 1/4/2 and the rest of components being 0, we have

1 2
B2+ Bygf2+ Byl < o, (5o ) I = ()
Then
|Bij| < |Bij + Bii/2 + Bjj /2| + | — (Bii/2 + Bj;/2)| = 0p(1).

Thus we proved R
B =ATJrpA—ATJpA = o0,(1),

because the dimension of the matrix B, k, is finite. By Slutsky’s lemma

\/T(ATJT,DA)il/zAT(éTyp — 90) i> N (0, Ik) .

O
Proposition 8.6. For any positive definite matriz ©,
1 —1 1
(/ tHO -+ I ' @[tO —1)+ 1]1dt> = / 1080 @ (1711080 gy
0 0
Proof. (11.9) and (11.10) of Higham| (2008]) p272 give, respectively, that
1
vecE = / 1980 @ (1=0180 g voe (O, E),
0
1
vee L(O, E) = / HO — 1)+ 11" & [t(O — I) + 1] 'dt vec E.
0
Substitute the preceding equation into the second last
1 1
vecE = / et8® @ o171 log@dt/ tO© —I)+ I '@ [t(© — 1)+ I] *dt vec E.
0 0
Since E is arbitrary, the result follows. O

Example 8.1. In the special case of normality, V = 2D, D} (X ® 2) (Magnus and Neudecker
(1986) Lemma 9). Then Gp could be simplified into

Gp =

2T (ETWE) 'ETWD; H(D™Y? @ D™Y?)D, D (X @ £)(D~Y? @ D™Y?)HD}"WE(ETWE) !¢
= 2T(ETWE) 'ETWD;H(D 2@ D2 (2o x) (D2 @ DV HD" WE(ETWE) !¢

= 2T(ETWE) 'ETWD; H(D™Y?2D™V2 @ D~'22D V2 HD}" WE(ETWE) !¢

=21 (ETWE) 'ETWD,;H(© @ ©)HD,”"WE(ETWE) ¢,

where the second equality is true because, given the structure of H, via Lemma 11 of |Magnus
and Neudecken (1986), we have the following identity:

DIH(D™Y2 @ D™Y? = DFH(D™Y? 9 D~V*D,D.
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